Skip to main content
Log in

Calcium, magnesium, and zinc status in experimental hypothyroidism

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, experimental hypothyroidism was established and used to investigate possible alterations in the calcium, magnesium, and zinc homeostasis by assessing their concentration in plasma and erythrocytes. Hypothyroidism was induced by administration of methimazole an iodine blocker at a dose of 75 mg/100 g food for 3 wk.

In the methimazole-induced hypothyroid state, the experimental animals showed a significant decrease in plasma zinc concentration, whereas a significant increase in plasma magnesium concentration occurred. No change was observed in plasma calcium concentration. The erythrocyte zinc and calcium concentrations were found to be increased, whereas magnesium concentration decreased. Erythrocyte magnesium concentration showed a significant positive correlation with T4 values.

The study provides evidence for marked alterations in homeostatis of zinc, magnesium, and calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Rude, Magnesium metabolism and deficiency,Endocrinology Metab. Clin. North Am. 22, 377–395 (1993).

    CAS  Google Scholar 

  2. A. Prasad, Clinical manifestations of zinc deficiency,Ann Rev. Nutr. 5, 341–363, (1985).

    Article  CAS  Google Scholar 

  3. K. D. Burman, J. M. Monchik, J. M. Earll, and L. Wartofsky, Ionized and total serum calcium and parathyroid hormone in hyperthyroidism,Ann Intern. Med. 84, 668–671 (1976).

    PubMed  CAS  Google Scholar 

  4. E. Dolev, P. A. Deuster, B. Solomon, U. H. Trostmann, L. Wartofsky, and K. D. Burman, Alterations in magnesium and zinc metabolism in thyroid disease, Metabolism37, 61–67 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. A. O. Olukoga, R T. Erasmus, and H. O. Adewaye, Erythrocyte and plasma magnesium status in Nigerians with diabetes mellitus, Ann. Clin. Biochem.26, 74–77 (1989).

    PubMed  Google Scholar 

  6. G. ŞimŞek, G. Andican, E. ünal, H. Hatemi, G. Yiğit, and G. Andican, Calcium, magnesium and zinc status in experimental hyperthyroidism, Biol. Trace Element Res.57, 131–137 (1997).

    Google Scholar 

  7. L. Mosekilde, F. Meisen, J. P. Bagger, O. Myhre-Jensen, and N. S. Sorensen, Bone changes in hyperthyroidism:interrelationships between bone morphometry, thyroid function and calcium-phosphorous metabolism,Acta Endocrinol. 85, 515–525 (1977).

    PubMed  CAS  Google Scholar 

  8. H. Peerenboom, E. Keck, H. L. Kruskemper, and G. Strohmeyer, The defect of intestinal calcium transport in hyperthyroidism and its response to therapy,J. Clin. Endocrinol. Metab. 59, 936–940.

  9. P. Garnero, V. Vassy, A. Bertholin, J. P. Riou, and P. D. Delmas, Markers of bone turnover in hyperthyroidism and effects of treatment,Clin. Endocrinol. Metab. 78, 955–959 (1994).

    Article  CAS  Google Scholar 

  10. J. E. Rizek, A. Dimich, and S. Wallach, Plasma and erythrocyte magnesium in thyroid disease, J. Clin. Endocrinol. Metab. 25, 350–358 (1965)

    PubMed  CAS  Google Scholar 

  11. J. E. Jones, P. C. Desper, S. R. Shane, and E. B. Flink, Magnesium metabolism in hyperthyroidism and hypothyroidism.J. Clin. Invest. 45-49, 891 (1966).

    Google Scholar 

  12. T. Ogihara, T. Yamamoto, K. Miyai, and Y. Kumahara, Plasma renin activity and aldosterone concentration of patients with hyperthyroidism and hypothyroidism,Endocrinol. Jpn. 20, 433–443 (1973).

    PubMed  CAS  Google Scholar 

  13. M. Montiel, E. Jimenez, J. A. Navaez, and M. Morell, Aldosterone and plasma renin activity in hyperthyroid rats: Effects of propranolol and propylthiouracil.J. Endocrinol. Invest. 7, 559–565 (1984).

    PubMed  CAS  Google Scholar 

  14. R. Horton and E. Biglieri, Effect of aldosterone on the metabolism of magnesium,J. Clin. Endocrinol. Metab. 22, 1187–1190 (1972).

    Google Scholar 

  15. A. J. Lostroh, and M. E. Krahl, Accumulation in vitro of Mg++ and K+ in rat uterus: Ion pump activity,Bioch. Biophys. Acta 291, 260–264 (1973).

    Article  CAS  Google Scholar 

  16. K. Darly and M. D. Granner, Thyroid hormones, inHarper’s Biochemistry, 22nd ed., Prentice-Hall, CT, Int. pp. 487–491 (1990).

    Google Scholar 

  17. M. Deluise, and J. S. Flier, Status of the red cell Na, K pump in hyper- and hypothyroidism,Metabolism 32, 25–31 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. C. H. Cole, and R. W. Waddell, Alteration in intracellular sodium concentration and oubain-sensitive ATPase in erythrocytes from hyperthyroid patients,J. Clin. Endocrinol. Metab. 42, 1056 (1976).

    Article  PubMed  CAS  Google Scholar 

  19. H. Zumkley and H. Lehnert, Magnesium, Potassium and hormonal regulation,Magnesium 3, 239–243 (1984).

    PubMed  CAS  Google Scholar 

  20. S. Wallach, L. N. Ci, F. H. Rogan, and H. L. Jones, Plasma and erythrocyte magnesium in health and disease,J. Lab. Clin. Med. 59, 195–210 (1962).

    PubMed  CAS  Google Scholar 

  21. J. E. Jones, P. C. Desper, S. R. Shane, and E. B. Flink, Magnesium metabolism in hyperthryoidism and hypothyroidism.J. Clin. Invest. 45, 891–386 (1966).

    PubMed  CAS  Google Scholar 

  22. Y. Shibutani, T. Yokota, S. Iijima, A. Fujioka, S. Katsuno, and K. Sakamoto, Plasma and erythrocyte magnesium concentrations in thyroid disease: Relation to thyroid function and the duration of illness,Jpn. J. Med. 28, 496–502 (1989).

    PubMed  CAS  Google Scholar 

  23. K. Aihara, Y. Nishi, S. Hatano, M. Kihara, K. Yoshimitsu, and N. Takeichi,Am J. Clin. Nutr. 40, 26–35 (1984).

    PubMed  CAS  Google Scholar 

  24. Y. Nishi, R. Kawate, and T. Usui, Zinc metabolism in thyroid disease.Postgrad. Med. J. 56, 833–837 (1980).

    PubMed  CAS  Google Scholar 

  25. J. R. K. Robson and L. Spell, Erythrocyte zinc,Am J. Clin. Nutr. 34, 1983 (1981).

    PubMed  CAS  Google Scholar 

  26. G. Saner, S. SavaŞan, and N. Saka, Zinc metabolism in hypothryoidism,The Lancet 340, 432–433 (1992).

    Article  CAS  Google Scholar 

  27. K. Yoshida, Y. Kiso, T. Watanabe, K. Kaise, Y. Itagaki, M. Yamamoto, T. Sakurada, and K. Yoshinga, Erythrocyte zinc in hyperthyroidism: Reflection on integrated thryoid hormone levels over the previous few months,Metabolism 39, 182–186 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. H. S. Yadav, K. K. Nagpal, B. N. Sharma, and B. N. Chaudhuri, Influence of thyroxine and temperature on zinc metabolism.Indian J. Exp. Biol. 18, 993–996 (1980).

    PubMed  CAS  Google Scholar 

  29. N. Taniguchi, N. Ishikawa, T. Kondo, Inhibitory effect of thyoxine on carbonic anhydrase B isozyme biosynthesis in rabbit reticulocyte lysates.Biochem. Biophsy. Res. Commun, 85, 952–958 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ŞimŞek, G., Andican, G., Karako©, Y. et al. Calcium, magnesium, and zinc status in experimental hypothyroidism. Biol Trace Elem Res 60, 205–213 (1997). https://doi.org/10.1007/BF02784440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784440

Index Entries

Navigation