Skip to main content
Log in

Involvement of zinc in intracellular oxidant/antioxidant balance

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of zinc (Zn) on cellular oxidative metabolism is complex and could be explained by multiple complementary interactions. In this study, we evaluated the impact of Zn on the pro-oxidant/ antioxidant balance of HaCaT keratinocytes.

Cells were submitted to a diffusible metal chelator able to induce intracellular Zn deprivation, TPEN, in combination or not with Zn chloride (ZnCl2), in the culture medium. The intracellular amount of Zn, copper (Cu), and iron (Fe) was determined, as well as CuZnSOD and MnSOD activities and glutathione reserves. The consequence of the modulation of Zn concentration on lipid peroxidation was also evaluated.

TPEN induced a significant dose-dependent decrease in intracellular Zn and Cu (from 394–181 and 43–21 Μg/g protein, respectively, after 6 h of TPEN 50 ΜM). No significant change in intracellular Fe concentration was found following TPEN exposure. The SOD activities were unchanged after 6 h of TPEN 50 ΜM application, either CuZnSOD or MnSOD. Cells exposure to TPEN induced a deep time- and dosedependent decrease in their glutathione content (from 65–8 ΜM/g protein after 6 h of TPEN 50 ΜM), and a concomittant increase in glutathione in the cell-culture supernatants. No significant change in lipid peroxidation products was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TPEN:

NNN′N′,-tetrakis(2-pyridylmethyl)ethylene diamine

ROS:

reactive oxygen species

SOD:

Superoxide dismutase

PBS:

phosphate-buffered saline

CuZnSOD:

copper, zinc-superoxide dismutase

MnSOD:

manganese Superoxide dismutase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

TBARs:

thiobarbituric acid reactive substances

UVA:

ultraviolet A

Zn:

zinc

Cu:

copper

References

  1. A. E. Favier, Zinc-ligand interactions and oxygen free radical formation, inHandbook of Metal-Ligand Interactions in Biological Fluids, G. Berthow, ed., M. Dekker, New York, pp. 876–887 (1995).

    Google Scholar 

  2. T. M. Bray and W. J. Bettger, The physiological role of zinc as an antioxidant.Free Radical Biol. Med. 8, 281–291 (1990).

    Article  CAS  Google Scholar 

  3. C. Coudray, F. Boucher, M. J. Richard, J. Arnaud, J. De Leiris, and A. Favier, Zinc deficiency, ethanol, and myocardial ischemia affect lipoperoxidation in rats.Biol. Trace Element Res. 30, 103–118 (1991).

    CAS  Google Scholar 

  4. P. Faure, A. M. Roussel, M. J. Richard, T. Foulon, P. Groslambert, A. Hadjan, and A. Favier, Effect of an acute zinc depletion on rat lipoprotein distribution and peroxidation.Biol. Trace Element Res. 28, 135–146 (1991).

    Article  CAS  Google Scholar 

  5. C. Coudray, M. J. Richard, F. Laporte, P. Faure, A. M. Roussel, and A. Favier, Superoxide dismutase activity and zinc status: a study in animals and man.J. Nutr. Med. 3, 13–26 (1992).

    Article  Google Scholar 

  6. M. T. Leccia, M. J. Richard, J. C. Beani, H. Faure, A. M. Monjo, J. Cadet, P. Amblard, and A. Favier, Protective effect of selenium and zinc on UV-A damage in human skin fibroblasts.Photochem. Photobiol. 58, 548–553 (1993).

    PubMed  CAS  Google Scholar 

  7. M. J. Richard, P. Guiraud, M. T. Leccia, J. C. Beani, and A. Favier, Effect of zinc supplementation on resistance of cultured human skin fibroblasts towards oxidant stress.Biol. Trace Element Res. 37, 187–199 (1993).

    CAS  Google Scholar 

  8. M. O. Parat, M. J. Richard, S. Pollet, C. Hadjur, A. Favier, and J. C. Beani, Zinc and DNA fragmentation in keratinocyte apoptosis: its inhibitory effect in UVB-irradiated cells.J. Photochem. Photobiol. B, Biol.,37, 101–106 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. P. Boukamp, R. Petrussevka, D. Breitkreutz, J. Hornung, A. Markham, and N. Fusenig, Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line.J. Cell. Biol. 106, 761–771 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. T. P. Akerboom and H. Sies, Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples.Methods Enzymol. 77, 373–382 (1981).

    PubMed  CAS  Google Scholar 

  11. S. Marklund and G. Marklund, Involvement of the Superoxide anion radical in the autooxidation of pyrogallol and a convenient assay of Superoxide dismutase.Eur. J. Biochem. 47, 469–474 (1974).

    Article  PubMed  CAS  Google Scholar 

  12. M. J. Richard, B. Portal, J. Meo, C. Coudray, A. Hadjan, and A. Favier, Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid.Clin. Chem. 38, 704–709 (1992).

    PubMed  CAS  Google Scholar 

  13. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with Folin phenol reagent.J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  14. C. Shopsis and G. J. Mackay, Semiautomated assay for cell culture.Anal. Biochem. 140, 104–107 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. P. D. Zalewski, I. J. Forbes, and W. H. Betts, Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II).Biochem. J. 296, 403–408 (1993).

    PubMed  CAS  Google Scholar 

  16. M. B. Iszard, J. Liu, and C. D. Klaassen, Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats.Toxicology 104, 25–33 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. J. M. Hsu, Zinc deficiency and glutathione linked enzymes in rat liver.Nutr. Rep. Int. 25, 573–582 (1982).

    CAS  Google Scholar 

  18. B. J. Mills, R. D. Lindeman, and C. A. Lang, Effect of zinc deficiency on blood glutathione levels.J. Nutr. 111, 1098–1102 (1981).

    PubMed  CAS  Google Scholar 

  19. M. A. Fernandez and B. L. O’Dell, Effect of zinc deficiency on plasma glutathione in the rat.Proc. Soc. Exp. Biol. Med. 173, 564–567 (1983).

    PubMed  CAS  Google Scholar 

  20. S. M. Chen and T. K. Young, Platelet levels of reduced glutathione, Superoxide dismutase, zinc and malondialdehyde in uremic patients.Miner. Electrolytes Metab. 18, 349–353 (1992).

    CAS  Google Scholar 

  21. J. C. Seagrave, R. A. Tobey, and C. E. Hildebrand, Zinc effects on glutathione metabolism relationship to zinc-induced protection from alkylating agents.Biochem. Pharmacol. 32, 3017–3021 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. N. S. Kosower and E. M. Kosower, The glutathione-glutathione disulfide system, inFree Radical in Biology, W. A. Pryor, ed., Academic, London, pp. 55–84 (1976).

    Google Scholar 

  23. W. S. Postal, E. J. Vogel, C. M. Young, and F. T. Greenaway, The binding of copper(II) and zinc(II) to oxidized glutathione.J. Inorg. Biochem. 25, 25–33 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. O. W. Griffith and A. Meister, Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (s-n-butyl homocysteine sulfoximine).J. Biol. Chem. 254, 7558–7560 (1979).

    PubMed  CAS  Google Scholar 

  25. E. M. Kosower, W. Correa, B. J. Kinon, and N. S. Kosower, Glutathione. VIL Differenciation among substrates by the thiol-oxidizing agent, diamide.Biochim. Biophys. Acta 264, 39–44 (1972).

    PubMed  CAS  Google Scholar 

  26. H. J. Wedner, L. Simchowitz, W. F. Stenson, and C. M. Fishman, Inhibition of human polymorphonuclear leukocyte function by 2-cyclohexene-l-one.J. Clin. Invest. 68, 535–543 (1981).

    PubMed  CAS  Google Scholar 

  27. S. M. Deneke and B. L. Fanburg, Regulation of cellular glutathione.Am. J. Physiol. 257, 163–173 (1989).

    Google Scholar 

  28. S. Orrenius, Mechanisms of oxidative cell damage, inFree Radicals. From Basic Science to Medicine, G. Poli, ed., BirkhÄuser Verlag, Basel, pp. 47–63 (1993).

    Google Scholar 

  29. A. Moysan, I. Marquis, F. Gaboriau, R. Santus, L. Dubertret, and P. Morliàre, Ultraviolet A-induced lipid peroxidation and antioxidant defense systems in cultured human skin fibroblasts.J. Invest. Dermatol. 100, 692–698 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. M. J. McCabe Jr, S. A. Jiang, and S. Orrenius, Chelation of intracellular zinc triggers apoptosis in mature thymocytes.Lab. Invest. 69, 101–110 (1993).

    PubMed  CAS  Google Scholar 

  31. S. Jiang, S. C. Chow, M. J. McCabe, Jr, and S. Orrenius, Lack of Ca2+ involvement in thymocyte apoptosis induced by chelation of intracellular Zn2+.Lab. Invest. 73, 111–117 (1995).

    PubMed  CAS  Google Scholar 

  32. A. F. Slater, C. Stefan, I. Nobel, D. J. Van-den-Dobbelsteen, and S. Orrenius, Signalling mechanisms and oxidative stress in apoptosis.Toxicol. Lett. 82, 149–153 (1995).

    Article  PubMed  Google Scholar 

  33. L. Ghibelli, S. Coppola, G. Rotilio, E. Lafavia, V. Maresca, and M. R. Ciriolo, Nonoxidative loss of glutathione in apoptosis via GSH extrusion.Biochem. Biophys. Res. Commun. 216, 313–320 (1995).

    Article  PubMed  CAS  Google Scholar 

  34. C. T. Walsh, H. H. Sandstead, A. S. Prasad, P. M. Newberne, and P. J. Fraker, Zinc: health effects and research priorities for the 1990s.Environ. Health Persped. 102, 5–46 (1994).

    Article  CAS  Google Scholar 

  35. J. H. Freedman, M. R. Ciriolo, and J. Peisach, The role of glutathione in copper metabolism and toxicity.J. Biol. Chem. 264, 5598–5605 (1989).

    PubMed  CAS  Google Scholar 

  36. J. Borovansky and P. A. Riley, Cytotoxicity of zinc in vitro.Chem. Biol. Interact. 69, 279–291 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. S. Miccadei, M. E. Kyle, D. Gilfor, and J. L. Farber, Toxic consequences of the abrupt depletion of glutathione in cultured rat hepatocytes.Arch. Biochem. Biophys. 265, 311–320 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. R. Reiter and A. Wendel, Chemically-induced glutathione depletion and lipid peroxidation.Chemico-Biol. Interact. 40, 365–374 (1982).

    Article  CAS  Google Scholar 

  39. A. E. G. Cass, Superoxide dismutases, inHandbook of Metal-Ligand Interactions in Biological Fluids, G. Berthow, ed., M. Dekker, New York, pp. 372–387 (1995).

    Google Scholar 

  40. P. Cerutti, R. Ghosh, Y. Oya, and P. Amstad, The role of the cellular antioxidant defense in oxidant carcinogenesis.Environ. Health Perspect. 102, 123–130 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. C. Lai, W. Huang, A. Askari, Y. Wang, N. Sarvazyan, L. Klevay, and T. Chiu, Differential regulation of Superoxide dismutase in copper-deficient rat organs.Free Radical Biol. Med. 16, 613–620 (1994).

    Article  CAS  Google Scholar 

  42. C. Lai, W Huang, L. Klevay, W. Gunning, and T. Chiu, Antioxidant enzyme gene transcription in copper-deficient rat liver.Free Radical Biol. Med. 21, 233–240 (1996).

    Article  CAS  Google Scholar 

  43. U. V. Weser, G. Barth, C. Djerassi, H. J. Hartman, P. Krauss, G. Voelcker, W. Voelter, and W. Voetsh, A study on purified apo-erythrocuprein.Biochim. Biophys. Acta 278, 28–44 (1972).

    PubMed  CAS  Google Scholar 

  44. J. S. Valentine, M. W. Pantoliano, P. J. McDonnell, A. R. Burger, and S. J. Lipperd, pHdependent migration of copper (2+) to the vacant zinc-binding site of zinc-free bovine erythrocyte Superoxide dismutase.Proc. Natl. Acad. Sci. USA 76, 4254–59 (1979).

    Google Scholar 

  45. H. M. Hassan, Superoxide dismutases, inBiological Roles of Copper, Excerpta Medica, pp. 125–142 (1980).

  46. L. Jornot and A. F. Junod, Variable glutathione levels and expression of antioxidant enzymes in human endothelial cells.Am. J. Physiol. 264, 482–489 (1993).

    Google Scholar 

  47. X. S. Wan and D. K. St Clair, Thiol-modulating agents increase manganese Superoxide dismutase activity in human lung fibroblasts.Arch. Biochem. Biophys. 304, 89–93 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. D. J. Tate, M. V. Miceli, D. A. Newsome, N. W. Alcock, and P. D. Oliver, Influence of zinc on selected cellular functions of cultured human retinal pigment epithelium.Curr. Eye Res. 14, 897–903 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. Y. Sun and L. W. Oberley, Redox regulation of transcriptional activators.Free Radical Biol. Med. 21, 335–348 (1996).

    Article  CAS  Google Scholar 

  50. M. Meyer, H. L. Pahl, and P. A. Baeuerle, Regulation of the transcription factors NF-κB and AP-1 by redox changes.Chemico-Biolog. Interact. 91, 91–100 (1994).

    Article  CAS  Google Scholar 

  51. G. W. Verhaegh, M. O. Parat, M. J. Richard, and P. Hainaut, Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parat, MO., Richard, MJ., Béani, JC. et al. Involvement of zinc in intracellular oxidant/antioxidant balance. Biol Trace Elem Res 60, 187–204 (1997). https://doi.org/10.1007/BF02784439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784439

Index Entries

Navigation