Skip to main content
Log in

Polyatomics in zinc isotope ratio analysis of plasma samples by inductively coupled plasma-mass spectrometry and applicability of nonextracted samples for zinc kinetics

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Inductively coupled plasma-mass spectrometry (ICP-MS) is a powerful tool for both quantitative multielement analyses of inorganic elements and measurement of isotope ratios (IRs). The main disadvantage of this technique is the existence of polyatomic isobaric interferences at some key masses. Zinc has been investigated for such potential interferences in serum or plasma. The Zn isotopes,66Zn and68Zn, have no apparent interferences, but32S16O2 and32S2 are isobaric with64Zn. The possible effects of S and other major components of blood plasma—Na, K, Cl, P, Ca—on Zn IRs were investigated using a series of mineral solutions which simulated human plasma with respect to these elements. The mixture of all mineral elements interfered only with64Zn (6.66 ng/mL) and70Zn (8.51 ng/mL). Interferences to66Zn,67Zn, and68Zn were minimal containing 0.90, 0.94, and 0.39 ng/mL, respectively. The copresence of Na or S shifted35Cl16O2 (atomic mass 67 coming from Cl solution) to35Cl2 which reduced the contribution to67Zn. The hypothesis that Zn IRs obtained from plasma at various intervals after the intravenous administration of enriched67Zn to humans would reflect those obtained after extraction of Zn was therefore tested. To compare the two pretreatment methods, “extraction” versus “nonextraction,” specimens were collected from 10 human subjects at intervals of 5 min to 24 h postinjection, and in 4 subjects from 5 min to 9 d postinjection. Two separate aliquots of plasma from each time-point were dried and digested with hydrogen peroxide, and the residue dissolved in nitric acid. One specimen was subjected to zinc extraction using ammonium diethyldithiocarbamate chelate followed by back extraction into nitric acid. The matching aliquot received no further pretreatment. The normalized IRs obtained from67Zn/66Zn and67Zn/68Zn in both the “extracted” and “nonextracted” samples agreed well(r 2 = 0.976 andr 2 = 0.985, respectively) compared to those from other ratios (r 2 = 0.838 for67Zn/64Zn andr 2 = 0.747 for67Zn/70Zn). Considering the minimum possibility of isobaric interferences in plasma samples,67Zn/68Zn obtained from “nonextracted” samples is sufficient for routine Zn kinetic analysis by ICP-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Goldenberg, T. Tamura, Y. Neggers, R. L. Copper, K. E. Johnston, M. B. DuBard, et al.,JAMA 274, 463–468 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. D. M. Foster, R. L. Aamondt, R. I. Henkin, and M. Berman,Am. J. Physiol. 273(5), R340-R349 (1979).

    Google Scholar 

  3. R. I. Henkin, D. M. Foster, R. L. Aamondt, and M. Berman,Metabolism 33, 491–501 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. M. E. Wastney, R. L. Aamondt, W. F. Rumble, and R. I. Henkin,Am. J. Physiol. 251, R398-R408 (1986).

    PubMed  CAS  Google Scholar 

  5. R. A. Dunn and R. J. Cousins,Am. J. Physiol. 256, E420-E430 (1989).

    PubMed  CAS  Google Scholar 

  6. N. M. Lowe, I. Bremmer, and M. J. Jackson,J. Nutr. 65, 445–455 (1991).

    Article  CAS  Google Scholar 

  7. T. Hawkins, J. M. Marks, V. M. Hummer, and M. W. Greaves,Clin. Exp. Dermatol. 1, 243–252 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. J. R. Turnlund, M. C. Michel, W. R. Keyes, J. C. King, and M. C. Margen,Am. J. Clin. Nutr. 35, 1033–1044 (1982).

    PubMed  CAS  Google Scholar 

  9. J. R. Turnlund, J. C. King, W. R. Keyes, B. Gong, and M. C. Michel,Am. J. Clin. Nutr. 40, 1071–1077 (1984).

    PubMed  CAS  Google Scholar 

  10. J. R. Turnlund, N. Durkin, F. Costa, and S. Margen,J. Nutr. 116, 1239–1247 (1986).

    PubMed  CAS  Google Scholar 

  11. N. W. Istfan, M. Janghorbani, and V. R. Young,Am. J. Clin. Nutr. 38, 187–194 (1983).

    PubMed  CAS  Google Scholar 

  12. L. V. Miller, K. M. Hambidge, V. L. Naake, Z. Hong, J. L. Westcott, and P. V. Fennessey,J. Nutr. 124, 268–276 (1994).

    PubMed  CAS  Google Scholar 

  13. M. J. Jackson, D. A. Jones, R. H. T. Edwards, I. G. S. Swainbank, and M. Coleman,Br. J. Nutr. 51, 199–208 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. M. J. Jackson, R. Giugliano, and L. G. Giugliano,Br. J. Nutr. 59, 193–203 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. M. Janghorbani, T. G. Bill, and V. R. Young,Clin. Chim. Acta 108, 9–24 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. I. G. Gokmen, N. K. Aras, and G. E. Gordon,Anal. Chem. 61, 2757–2763 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. M. E. Wastney, I. G. Gokmen, R. L. Aamodt, W. F. Rumble, G. E. Gordon, and R. I. Henkin,Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol.29), R134-R141 (1991).

    PubMed  CAS  Google Scholar 

  18. S. Fairweather-Tait, M. J. Jackson, T. E. Fox, S. G. Warf, J. Eagles, and P. C. Croghan,Br. J. Nutr. 70, 221–234 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. P. L. Peirce, K. M. Hambidge, C. H. Goss, L. V. Miller, and P. V. Fennessey,Anal. Chem. 59, 2034–2037 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. J. K. Friel, V. L. Naake, Jr., L. V. Miller, P. V. Fennessey, and K. M. Hambidge,Am. J. Clin. Nutr. 55, 473–477 (1992).

    PubMed  CAS  Google Scholar 

  21. L. Sian, X. Mingyan, L. V. Miller, L. Tong, N. F. Krebs, and K. M. Hambidge,Am. J. Clin. Nutr. 63, 348–353 (1996).

    PubMed  CAS  Google Scholar 

  22. R. E. Serfass, J. J. Thompson, and R. S. Houlk,Anal. Chim. Acta 188, 73–84 (1986).

    Article  CAS  Google Scholar 

  23. N. M. Lowe, A. Green, J. M. Rhodes, M. Lombard, R. Jalan, and M. J. Jackson,Clin. Sci. 84, 113–117 (1993).

    PubMed  CAS  Google Scholar 

  24. J. K. Friel, H. P. Longerich, and S. E. Jackson,Biol. Trace Element Res. 37, 123–136 (1993).

    CAS  Google Scholar 

  25. K. Yokoi, N. W. Alcock, and H. H. Sandstead,J. Lab. Clin. Med. 124, 852–861 (1994).

    PubMed  CAS  Google Scholar 

  26. K. Yokoi, N. W. Alcock, and H. H. Sandstead,Biochem. Res. Trace Elements 5, 69–76 (1994).

    CAS  Google Scholar 

  27. H. Vanhoe, C. Vandecasteele, J. Versieck, and R. Dams,Anal. Chem. 61, 1851–1858 (1989).

    Article  PubMed  CAS  Google Scholar 

  28. K. Yokoi, V. M. Sadagopa Ramanujam, N. G. Egger, H. H. Dayal, N. W. Alcock, and H. H. Sandstead,FASEB J. 11, A407 (1997).

    Google Scholar 

  29. V. M. Sadagopa Ramanujam, K. Yokoi, N. G. Egger, H. H. Dayal, N. W. Alcock, and H. H. Sandstead,FASEB J. 11, A407 (1997).

    Google Scholar 

  30. N. G. Egger, K. Yokoi, V. M. Sadagopa Ramanujam, H. H. Dayal, N. W. Alcock, and H. H. Sandstead,FASEB J. 11, A407 (1997).

    Google Scholar 

  31. N. W. Alcock,Biol. Trace Element Res. 13, 363–370 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanujam, V.M.S., Yokoi, K., Egger, N.G. et al. Polyatomics in zinc isotope ratio analysis of plasma samples by inductively coupled plasma-mass spectrometry and applicability of nonextracted samples for zinc kinetics. Biol Trace Elem Res 68, 143–158 (1999). https://doi.org/10.1007/BF02784403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784403

Index Entries

Navigation