Skip to main content
Log in

Effects of trace metal compounds on HIV-1 reverse transcriptase

An in vitro study

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of 44 different metal ions (Ag+, Al3+, AsO -2 , Au3+, Ba2+, Be2+, Bi3+, Cd2+, Ce3+, Co2+, CrO 2-4 , Cr3+, Cs+, Cu2+, Fe3+, Fe2+, Ga3+, Ge4+, Hg2+, Ir4+, La3+, Li+, Mn2+, Mo6+, Ni2+, Os4+, Pb2+, Pt4+, Rb+, Rh3+, Sb5+, SeO 2-4 , SeO 2-3 , Sn2+, Sr2+, Th4+, Tl+, UO2/2+, VO3/-, VO2+, WO 2-4 , Y3+, Zn2+, and Zr4+) on the activity of the reverse transcriptase (RT) of the human immunodeficiency virus (HIV-1) was investigated in vitro. For this study, the RT activity assay was carried out by means of an enzyme-linked immunosorbent assay (ELISA) kit, using the template/primer hybrid poly(A) · oligo(dT)15, which required some modifications: (1) possible interfering metal chelators (such as EDTA) in the original lysis buffer were avoided, and a new buffer (50 mM Tris-NO3, pH 7.8) was used throughout; (2) an amount of 2 ng of RT per well was considered to be optimal after checking the linearity of the reaction with increasing amounts of enzyme; (3) an incubation temperature of 37‡C and an incubation time of 1 h were chosen after preliminary studies in a wide range of temperature and time. At an incubation temperature ≥40‡C, there was a dramatic loss of enzymatic activity. In addition, when RT alone was preincubated for 1 h at 5‡C, 25‡C, and 37‡C, there was a large (83%) loss of activity at 37‡C as compared to that at 5‡C. These results are indicative of enzyme thermolability, which is higher in the absence of substrates. The effect of metal ions on RT activity was tested using two different metal salt concentrations (10-4 M and 10-5 M). Under such experimental conditions, the presence of five metal ions (Pt4+, Ag+, Rh3+, Zn2+, and Hg2+) decreased the RT activity in a dose-response fashion. The observed order of effectiveness with respect to inhibition was Pt4+ > Ag+ > Rh3+ > Zn2+ = Hg2+. Estimated mean inhibitory concentrations (IC50) were 7.8 ΜM for (NH4)2PtCl6, 14.1ΜM for AgNO3, 46.8ΜM for RhCl3, 53.7ΜM for Zn(SO)4, and 56.2 ΜM for Hg(NO3)2. Because these data are of the same order of magnitude as the corresponding values related to other RT inhibitors used in anti-AIDS therapy, metal compounds or their derivatives could give an interesting contribution in the development of new RT inhibitors for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Goff, Retroviral reverse transcriptase synthesis structure and function,J. AIDS 3, 817–831 (1990).

    CAS  Google Scholar 

  2. E. Gilboa, S. W. Mitra, S. Goff, and D. Baltimore, A detailed model of reverse transcription and test of crucial aspects,Cell 18, 93–100 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. F. di Marzo Veronese, T. D. Copeland, A. L. DeVico, R. Rahman, S. Oroszlan, R. C. Gallo, et al., Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV,Science 231, 1289–1291 (1986).

    Article  CAS  Google Scholar 

  4. A. G. Filler and A. M. L. Lever, Effects of cations substitutions on reverse transcriptase and human immunodeficiency virus production.AIDS Res. Hum. Retrovirus 13, 291–299 (1997).

    Article  CAS  Google Scholar 

  5. J. F. Davies, Z. Hostomska, Z. Hostomsky, S. R. Jordan, and D. A. Matthews, Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase,Science 252, 88–95 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. R. F. Doolittle, D. F. Feng, M. S. Johnson, and M. A. McClure, Origins and evolutionary relationships of retroviruses,Quart. Rev. Biol. 64, 1–30 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. L. A. Kohlstaedt, J. Wang, J. M. Friedman, and P. A. Rice, Crystal structure at 3.5 å resolution of HIV-1 reverse transcriptase complexed with an inhibitor,Science 256, 1783–1790 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. D. S. Auld, H. Kawaguchi, D. M. Livingson, and B. L. Vallee, Zinc reverse transcriptase from mammalian RNA type C viruses,Biochem. Biophys. Res. Commun. 62, 296–302 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. M. J. Abrams and A. M. Barry, Metal compounds in therapy and diagnosis,Science 261, 725–730 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. A. S. Mildvam and L. A. Loeb, The role of metal ions in the mechanism of DNA and RNA polymerases,CRC Crit. Rev. Biochem. 61, 219–244 (1979).

    Article  Google Scholar 

  11. C. L. Hill, M. S. Weeks, and R. F. Schinazi, Anti-HIV-1 activity, toxicity, and stability studies of representative structural families of polyoxometalates,J. Med. Chem. 33, 2767–2772 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. T. C. Woon, R. I. Brinkworth, and D. P. Fairlie, Inhibition of HIV-1 proteinase by metal ions,Int. J. Biochem. 24, 911–914 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. J. A. V. Coates, N. Cammack, H. J. Jenkinson, I. M. Mutton, B. A. Pearson, R. Storer, et al., The separated enantiomer of 2′-deoxy-3′-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vivo,Antimicrob. Agents Chemotherap. 36, 202–205 (1992).

    CAS  Google Scholar 

  14. D. L. Romero, M. Busso, C. K. Tan, F. Reusser, J. R. Palmer, S. M. Poppe, et al., Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication,Proc. Natl. Acad. Sci. USA 88, 8806–8810 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. M. E. Goldman, J. H. Nunberg, J. A. O’Brien, J. C. Quintero, W. A. Schleif, K. F. Freund, et al., Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity,Proc Natl Acad Sci USA 88, 6863–6867 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. S. Vella, Update on a proteinase inhibitor,AIDS 8(Suppl.3), S25-S29 (1994).

    Article  PubMed  Google Scholar 

  17. D. D. Richman, HIV drug resistance,Annu. Rev. Pharmacol. Toxicol. 32, 149–164 (1993).

    Article  Google Scholar 

  18. D. D. Richman, J. C. Gatelli, J. Grimes, A. Tsiatis, and T. Gingeras, Detection of mutations associated with zidovudine resistance in human immunodeficiency virus by use of the PCR,J. Infect. Dis. 164, 1075–1081 (1991).

    PubMed  CAS  Google Scholar 

  19. L. Sillén and A. Martell,Stability Constants of Metal-Ion Complexes, The Chemical Society, Burlington House, London (1964).

    Google Scholar 

  20. D. Crans, R. Bunch, and L. Theisen, Interaction of trace levels of vanadium(IV) and vanadium(V) in biological systems,J. Am. Chem. Soc. 111, 7595–7607 (1989).

    Article  Google Scholar 

  21. M. A. Serra, V. Barassi, C. Canavese, and E. Sabbioni, Aluminium effect on the activity of superoxide dismutase and of other antioxygenic enzymes in vitro,Biol. Trace Element Res. 31, 79–96 (1991).

    CAS  Google Scholar 

  22. G. L. Rowley, Q. Ma, I. C. Bathurst, P. J. Barr, and G. L. Kenyon, Stabilization and activation of recombinant human immunodeficiency virus-1 reverse transcriptase-p66,Biochem. Biophys. Res. Commun. 167, 673–679 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbioni, E., Blanch, N., Baricevic, K. et al. Effects of trace metal compounds on HIV-1 reverse transcriptase. Biol Trace Elem Res 68, 107–119 (1999). https://doi.org/10.1007/BF02784400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784400

Index Entries

Navigation