Estuaries and Coasts

, Volume 29, Issue 4, pp 639–644 | Cite as

Relative effects ofLittoraria irrorata andProkelisia marginata onSpartina alterniflora

  • Danny J. GustafsonEmail author
  • Jeff Kilheffer
  • Brian R. Silliman


Spartina alterniflora salt marshes along the southeastern United States are some of the most productive and well studied ecosystems in the world. The role of physicochemical forces in regulatingSpartina growth is well understood, while the importance of grazers remains less clear. Recent studies have shown that the abundant marsh periwinkle,Littoraria irrorata, can exert strong control overSpartina through its grazing activities, but relatively little is known about its relative effects in comparison to other marsh plant consumers. To test the relative importance of snail and insect consumers onSpartina biomass, we conducted a 7-mo field experiment testing top-down regulation ofSpartina with all combinations ofL. irrorata (removed, control, c. 215 periwinkles m−2) andSpartina planthopper,Prokelisia marginata (removed, control). Snail removal resulted in a 50% increase inSpartina biomass while removal of planthoppers had no detectable effect. Planthopper density also increased by 50% when snails were excluded. In this South Carolina marsh,L. irrorata exerts a stronger top-down control ofSpartina thanP. marginata. These results indicate trophic cascade regulation ofSpartina salt marsh is more likely to occur through the predator(s)-Littoraria-plant interaction than through the predator(s)-Prokelisia-plant relationship.


Salt Marsh Trophic Cascade Experimental Marine Biology Spartina Alterniflora Predator Diversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bingham, F. O. 1972. Shell growth in the gastropodLittorina irrorata.Nautilus 85:136–141.Google Scholar
  2. Bradley, P. M. andJ. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics inSpartina alterniflora.Ecology 71:282–287.CrossRefGoogle Scholar
  3. Cardinale, B. J., C. T. Harvey, K. Gross, andA. R. Ives. 2003. Biodiversity and biocontrol: Emergent impacts of a multiple-enemy assemblage on pest suppression and crop yield in an agroecosystem.Ecology Letters 6:857–865.CrossRefGoogle Scholar
  4. Cardinale, B. J., M. A. Palmer, andS. J. Collins. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation.Nature 415:426–429.CrossRefGoogle Scholar
  5. Cotton, P. A., S. D. Rundle, andK. E. Smith. 2004. Trait compensation in marine gastropods: Shell shape, avoidance behavior, and susceptibility to predation.Ecology 85:1581–1584.CrossRefGoogle Scholar
  6. Daehler, C. C. andD. R. Strong. 1997. Reduced herbivory resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivory-free growth.Oecologia 110:99–108.CrossRefGoogle Scholar
  7. Denno, R. F., C. Gratton, M. A. Peterson, G. A. Langellotto, D. L. Finke, andA. F. Huberty. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community.Ecology 83:1443–1458.Google Scholar
  8. Denno, R. F. andM. A. Peterson. 2002. Caught between the devil and the deep blue sea, mobile planthoppers elude natural enemies and deteriorating host plants.American Entomologist 46: 95–109.Google Scholar
  9. Duffy, J. E. 2003. Biodiversity loss, trophic skew and ecosystem functioning.Ecology Letters 6:680–687.CrossRefGoogle Scholar
  10. Finke, D. L. andR. F. Denno. 2004. Predator diversity dampens trophic cascades.Nature 429:407–410.CrossRefGoogle Scholar
  11. Furbish, C. E. andM. Albano. 1994. Selective herbivory and plant community structure in a mid-Atlantic salt marsh.Ecology 75: 1015–1022.CrossRefGoogle Scholar
  12. Grevstad, F. S., D. R. Strong, D. Garcia-Rossi, R. W. Switzer, andM. S. Wecker. 2003. Biological control ofSpartina alterniflora in Willapa Bay, Washington using the planthopperProkelisia marginata: Agent specificity and early results.Biological Control 27:32–42.CrossRefGoogle Scholar
  13. Hamilton, P. V. 1978. Intertidal distribution and long-term movements ofLittorina irrorata (Mollusca: Gastropoda).Marine Biology 46:49–58.CrossRefGoogle Scholar
  14. Heck, K. L., J. R. Pennock, J. F. Valentine, L. D. Coen, andS. A. Sklenar. 2000. Effects of nutrient enrichment and small predator density on seagrass ecosystems: An experimental assessment.Limnology and Oceanography 45:1041–1057.CrossRefGoogle Scholar
  15. Hillebrand, H. 2005. Light regime and consumer control of autotrophic biomass.Journal of Ecology 93:758–769.CrossRefGoogle Scholar
  16. Howes, B. L., J. W. H. Dacey, andD. D. Goehringer. 1986. Factors controlling the growth form ofSpartina alterniflora: Feedbacks between above-ground production, sediment oxidation, nitrogen and salinity.Journal of Ecology 74:881–898.CrossRefGoogle Scholar
  17. Johnson Randall, L. A. andA. L. Foote. 2005. Effects of managed impoundments and herbivory on wetland plant production and stand structure.Wetlands 25:38–50.CrossRefGoogle Scholar
  18. Leonard, G. H., J. M. Levin, P. R. Schmidt, andM. D. Bertness. 1998. Flow-driven variation in intertidal community structure in a Maine estuary.Ecology 79:1395–1411.Google Scholar
  19. Mendelssohn, I. A. andJ. T. Morris. 2000. Eco-physiological controls on the productivity ofSpartina alterniflora Loisel, p. 59–80.In M. P. Weinstein and D. A. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.Google Scholar
  20. Moon, D. C. andP. Stiling. 2002. The influence of species identity and herbivore feeding mode on top-down and bottomup effects in a salt marsh system.Oecologia 133:243–253.CrossRefGoogle Scholar
  21. Morin, P. J. andS. P. Lawler. 1995. Food web architecture and population dynamics: Theory and empirical evidence.Annual Review of Ecology and Systematics 26:505–529.CrossRefGoogle Scholar
  22. Mulder, C. P. H., J. Koricheva, K. Huss-Danell, P. Hogberg, andJ. Joshi. 1999. Insects affects relationships between plant species richness and ecosystem processes.Ecology Letters 2:237–246.CrossRefGoogle Scholar
  23. Ngia, J. T. andR. L. Jefferies. 2004. Nutrient limitations of plant growth and forage quality in Arctic coastal marshes.Journal of Ecology 92:1001–1010.CrossRefGoogle Scholar
  24. Norberg, J. 2000. Resource-niche complementarity and autotrophic compensation determines ecosystem level responses to increased cladoceran species richness.Oecology 122:264–272.CrossRefGoogle Scholar
  25. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, andF. J. Torre. 1998. Fishing down marine food webs.Science 279:860–863.CrossRefGoogle Scholar
  26. Pennings, S. C., T. H. Carefoot, E. L. Siska, M. E. Chase, andT. A. Page. 1998. Feeding preferences of a generalist salt marsh crab: Relative importance of multiple plant traits.Ecology 79:1968–1979.Google Scholar
  27. Petchey, O. L., P. T. McPherson, T. M. Casey, andP. J. Morin. 1999. Environmental warming alters food-web structure and ecosystem function.Nature 402:69–72.CrossRefGoogle Scholar
  28. Rohde, S., M. Molis, andM. Wahl. 2004. Regulation of antiherbivore defense byFucus vesiculosus in response to various cues.Journal of Ecology 92:1011–1018.CrossRefGoogle Scholar
  29. Silliman, B. R. andM. D. Bertness. 2002. A trophic cascade regulates salt marsh primary production.Proceedings of the National Academy of Sciences 99:10500–10505.CrossRefGoogle Scholar
  30. Silliman, B. R. andA. Bortolus. 2003. Underestimation ofSpartina production in western Atlantic salt marshes: Marsh invertebrates eat more than just detritus.Oikos 101:549–555.CrossRefGoogle Scholar
  31. Silliman, B. R., C. A. Layman, K. Geyer, andJ. C. Zieman. 2004. Predation by the black-clawed mud crab,Panopeus herbstii, in mid-Atlantic salt marshes: Further evidence for top-down control of marsh grass production.Estuaries 27:188–196.CrossRefGoogle Scholar
  32. Silliman, B. R. andS. Y. Newell. 2003. Fungal farming in a snail.Proceeding of the National Academy of Sciences 100:15643–15648.CrossRefGoogle Scholar
  33. Silliman, B. R., J. van der Koppel, M. D. Bertness, L. E. Stanton, andI. A. Mendelssohn. 2005. Drought, snails, and large-scale die-off of southern U.S. salt marshes.Science 310:1803–1806.CrossRefGoogle Scholar
  34. Silliman, B. R. andJ. C. Zieman. 2001. Top-down control ofSpartina alterniflora production by periwinkle grazing in a Virginia marsh.Ecology 82:2830–2843.Google Scholar
  35. Smith, T. J. andW. E. Odum. 1983. The effects of grazing by snow geese on coastal salt marshes.Ecology 62:98–106.Google Scholar
  36. Stanhope, H. S., W. C. Banta, andM. H. Temkin. 1982. Size-specific emergence of the marsh snail,Littorina irrorata: Effect of predation by blue crabs in a Virginia salt marsh.Gulf Research Reports 7:179–182.Google Scholar
  37. Taylor, K. L. andJ. B. Grace. 1995. The effects of vertebrate herbivory on plant community structure in the coastal marshes of the Pearl River, Louisiana, USA.Wetlands 15:68–73.Google Scholar
  38. Tucker, A. D., N. N. Fitzsimmons, andJ. W. Gibbons. 1995. Resource partitioning by the estuarine turtle,Malaclemys terrapin: Trophic, spatial and temporal foraging constraints.Herpetologica 51:167–181.Google Scholar
  39. Valiela, I. andJ. M. Teal. 1979. The nitrogen budget of a salt marsh ecosystem.Nature 280:652–656.CrossRefGoogle Scholar
  40. van der Wal, R. andR. W. Brooker. 2004. Mosses mediate grazer impacts on grass abundance in Arctic ecosystems.Functional Ecology 18:77–86.CrossRefGoogle Scholar
  41. Vaughn, C. C. andF. M. Fisher. 1992. Dispersion of the salt-marsh periwinkleLittoraria irrorata: Effects of water level, size, and season.Estuaries 15:246–250.CrossRefGoogle Scholar
  42. Vaughn, C. C. andF. M. Fisher. 1988. Vertical migration as a refuge from predation in intertidal marsh snails: A field test.Journal of Experimental Marine Biology and Ecology 123:163–176.CrossRefGoogle Scholar
  43. Warren, J. H. 1985. Climbing as an avoidance behaviour in the salt marsh periwinkle,Littorina irrorata (Say).Journal of Experimental Marine Biology and Ecology 89:11–28.CrossRefGoogle Scholar
  44. Weinstein, M. P. andD. A. Kreeger. 2000. Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Boston, Massachusetts.Google Scholar
  45. West, D. L. andA. H. Williams. 1986. Predation byCallinectes sapidus (Rathbun) withinSpartina alterniflora (Loisel) marshes.Journal of Experimental Marine Biology and Ecology 100:75–95.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2006

Authors and Affiliations

  • Danny J. Gustafson
    • 1
    Email author
  • Jeff Kilheffer
    • 1
  • Brian R. Silliman
    • 2
  1. 1.Department of BiologyThe CitadelCharleston
  2. 2.College of William and MaryVirginia Institute of Marine SciencesWilliamsburg

Personalised recommendations