Skip to main content
Log in

Isolation and properties of lead-resistant variants of rat glioma cells

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Glial cells are thought to protect neurons from heavy-metal toxicity. To gain a better understanding of mechanisms of protection against lead compounds, a number of lead-resistant C6 rat glioma cell sublines have been isolated. After 8 mo of growth in the absence of lead nitrate, three sublines still maintain their lead-resistant phenotype. None of the lead-resistant sublines are cross-resistant to Cd(II) or Ni(II), but all are cross-resistant (in varying degrees) to Hg(II), As(III), Sb(III), and Sn(II), and one is resistant to trimethyl tin. No inducible lead resistance is seen in any glioma line. One subline has been used to create cell-cell hybrids with wild-type cells. The hybrids exhibit dominance of the lead-resistant phenotype. To identify and analyze altered gene expression at the mRNA level in the lead-resistant sublines, the differential display technique was used. Numerous differences are seen between amplified fragments from wild-type and lead-resistant cells. Candidate clones are now being analyzed to confirm the differential expression and to isolate cDNAs that confer lead resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Angle, Childhood lead poisoning and its treatment,Annu. Rev. Pharmacol. Toxicol. 33, 409–434 (1993).

    Article  PubMed  CAS  Google Scholar 

  2. T. J. Simons, Lead-calcium interactions in cellular lead toxicity,NeuroToxicology 14, 77–86 (1993).

    PubMed  CAS  Google Scholar 

  3. J. Markovac and G. W. Goldstein, Picomolar concentrations of lead stimulate brain protein kinase C,Nature 334, 71–73 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. J. T. Naarala, Lead amplifies glutamate-induced oxidative stress,Free Radical Biol. Med. 195, 689–693 (1995).

    Article  Google Scholar 

  5. P. Benda, J. Lightbody, G. Sato, L. Levine, and W. Sweet, Differentiated rat glial cell strain in tissue culture,Science 161, 370–371 (1968).

    Article  PubMed  CAS  Google Scholar 

  6. C. G. Naus, K. Elisevich, D. Zhu, D. J. Belliveau, and R. F Del Maestro,In vivo growth of C6 glioma cells transfected with connexin 43 cDNA,Cancer Res. 52, 4208–4213 (1992).

    PubMed  CAS  Google Scholar 

  7. E. Tiffany-Castiglioni, D. M. Garcia, J-N. Wu, J. Zmudzki, and G. R. Bratton, Effects of lead on viability and intracellular metal content of C6 rat glioma cells,J. Toxicol. Environ. Health,23, 267–279 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. E. Tiffany-Castiglioni, E. M. Sierra, J-N. Wu, and T. K. Rowles, Lead toxicity in neuroglia,NeuroToxicology 10, 417–44 (1989).

    PubMed  CAS  Google Scholar 

  9. D. Holtzman, J. E. Olson, C. DeVries, and K. Bensch, Lead toxicity in primary cultured cerebral astrocytes and cerebellar granular neurons,Toxicol. Appl. Pharmacol. 89, 211–225 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. M. Aschner, N. B. Eberle, S. Goderie, and K. H. Kimelberg, Methylmercury uptake in rat primary astrocyte cultures: The role of the neutral amino acid transport system,Brain Res. 521, 221–228 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. A. M. Marini, J. P. Schwartz, and I. J. Kopin, The neurotoxicity of l-methyl-4-phenylpuridinium in cultured cerebellar granule cells,J. Neurosci. 9, 3665–3672 (1989).

    PubMed  CAS  Google Scholar 

  12. P. Liang and A. B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction,Science 257, 967–971 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. Z. Wang and T. G. Rossman, Stable and inducible arsenite resistance in Chinese hamster cells,Toxicol. Appl. Pharmacol. 118, 80–86 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. D. Gartside, B. Weiss, and H. L. Evans, Alkylmercurial encephalopathy in the monkey (Saimiri sciureus andMacaca arctoides): A histopathologic and autoradiographic study,Acta Neuropathol. 32, 61–74 (1975).

    Article  Google Scholar 

  15. B. Hitzfeld, F. Planas-Bohne, and D. Taylor, The effect of lead on protein and DNA metabolism of normal and lead-adapted rat kidney cells in culture,Biol. Trace Element Res. 21, 87–95 (1989).

    Article  CAS  Google Scholar 

  16. Y. Skreb, V. Habazin-Novak, and N. Hors, The rate of DNA synthesis in Hela cells during combined long-term and acute exposures to lead,Toxicology 19, 1–10 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. R. A. Goyer, P. May, M. M. Cats, and M. R. Krigman, Lead and protein content of isolated intranuclear inclusion bodies from kidneys of lead-poisoned rats,Lab. Invest. 22, 245–251 (1970).

    PubMed  CAS  Google Scholar 

  18. B. A. Fowler, M. W. Kahng, D. R. Smith, E. A. Conner, and N. K. Laughlin, Implications of lead binding proteins for risk assessment of lead exposure,J. Expos. Anal. Environ. Epidemiol. 3, 441–448 (1993).

    CAS  Google Scholar 

  19. P. Mistry, G. Lucier, and B. Fowler, A High-affinity lead binding proteins in rat kidney cytosol mediate cell-free nuclear translocation of lead,J. Pharmacol. Exp. Ther. 232, 462 (1985).

    PubMed  CAS  Google Scholar 

  20. Z. Wang, S. Dey, B. P. Rosen, and T. G. Rossman, Efflux mediated resistance to arsenicals in arsenic resistant and -hypersensitive Chinese hamster cells,Toxicol. Appl. Pharmacol. 137, 112–119 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. B. J. Aungst and H. L. Fung, Kinetic characterization of in vitro lead transport across the rat small intestine: Mechanism of intestinal lead transport,Toxicol. Appl. Pharmacol. 61, 39–47 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. J. L Tomsig and J. B. Suszkiw, Permeation of Pb2+ through calcium channels: fura-2 measurements of voltageand dihydropyridine-sensitive Pb2+ entry in isolated bovine chromaffin cells,Biochim. Biophys. Acta 1069, 197–200 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. G. Audesirk and T. Audesirk, The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes,Neurotoxicology 14, 259–265 (1993).

    PubMed  CAS  Google Scholar 

  24. Y. C. Qian, E. Tiffany-Castiglioni, and E. D. Harris, Copper transport and kinetics in cultured C6 rat glioma cells,Am. J. Physiol, Cell Physiol. 38, C892-C898 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolzhanskaya, N., Gomcharova, E. & Rossmam, T.G. Isolation and properties of lead-resistant variants of rat glioma cells. Biol Trace Elem Res 65, 31–43 (1998). https://doi.org/10.1007/BF02784112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784112

Index entries

Navigation