Skip to main content

Advertisement

Log in

Effect of aluminum on superoxide dismutase activity in the adult rat brain

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Male rats were treated daily with an intraperitoneal injection of 15 mg aluminum (Al chloride)/kg body weight for 17 d, in order to study the effects on superoxide dismutase (SOD) activities in the brain (cortex). No significant difference between control and treated animals was registered in the Cu/Zn and Mn SOD activities in the gray matter of the cortex. High Al levels were found in the plasma, the spleen, and the liver of the treated animals in comparison to the controls, but not in the cortex homogenates (gray matter). In addition, Al induced a significant decrease in food ingestion and weight gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Alfrey, G. R. Le Gendre, and W. D. Kaenhy, The dialysis encephalopathy syndrome: Possible aluminum intoxication,N. Engl. J. Med. 294, 184–188 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. W. D. Kaenhy, A. C. Alfrey, R. E. Holman, and W. J. Shorr, Aluminum transfer during haemodialysis,Kidney Int. 12, 361–365 (1977).

    Article  Google Scholar 

  3. P. F. Gilli, F. Fagioli, P. L. Malacarne, U. Bedani, C. Buoncristiani, F. Carobi, et al., Serum aluminum levels and peritoneal dialysis,Int. J. Artif. Organs 7, 107–110 (1984).

    PubMed  CAS  Google Scholar 

  4. I. S. Parkinson, M. K. Ward, and D. N. S. Kerr, Dialysis encephalopathy, bone disease and anaemia. The aluminum intoxication syndrome during regular haemodialysis,J. Clin. Pathol. 34, 1285–1294 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. B. Corain, G. G. Bombi, A. Tapparo, M. Nicolini, P. Zatta, M. Perazzolo, et al., Alzheimer’s disease and aluminum toxicology,Environ. Health Perspect. 89, 233–235 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. P. Netter, M. Kessler, A. Gaucher, and B. Bannwarth, Does aluminum have a pathogenic role in dialysis associated arthropy?Ann. Rheum. Dis. 49, 573–575 (1990).

    PubMed  CAS  Google Scholar 

  7. P. O. Ganrot, Metabolism and possible health effects of aluminum,Environ. Health Perspect. 65, 363–441 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. J. C. Octive, M. Wood, and A. C. Johnson, Mutagenic effects of aluminum,Mutat. Res. 264, 135–137 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. D. R Mitrovic, A. Stankovic, P. Front, and B. Kuntz, La toxicité de l’aluminium sur les tissus est-elle due à la production de radicaux libres de l’oxygène?Presse Med. 16, 1702 (1987).

    PubMed  CAS  Google Scholar 

  10. B. N. Ames, M. K. Shigenaga, and T. M. Hagen, Oxidants, antioxidants, and the degenerative diseases of aging,Proc. Nail. Acad. Sci. USA 90, 7915–7922 (1993).

    Article  CAS  Google Scholar 

  11. K. F. Gey, Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease,Br. Med. Bull. 49(3), 679–699 (1993).

    PubMed  CAS  Google Scholar 

  12. J. A. Fee and J. S. Valentine, Chemical and physical properties of Superoxide, inSuperoxide and Superoxide Dismutases, A. Michelson, J. McCord, and I. Fridovich, eds., Academic, New York, pp. 9 (1977).

    Google Scholar 

  13. I. Fridovich, Superoxide radical and Superoxide dismutases,Ann. Rev. Biochem. 64, 97–112 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. A. Bast, Is formation of reactive oxygen by cytochrome P-450 perilous and predictable?Trends Pharmac. Sci. 7, 266–270 (1986).

    Article  CAS  Google Scholar 

  15. P. H. Evans, Free radicals in brain metabolism and pathology,Br. Med. Bull. 49, 577–587 (1993).

    PubMed  CAS  Google Scholar 

  16. M. Loppez-Torres, R. Perez-Campo, S. Cadenas, and C. Rojas, A comparative study of free radicals in vertebrates. II. Non-enzymatic antioxydants and oxydative stress,Comp. Biochem. Physiol. 105, 757–763 (1993).

    Google Scholar 

  17. C. P. Lebel and S. C. Bondy, Oxygen radicals: common mediators of neurotoxicity,Neurotoxicol. Teratol. 13, 341–346 (1991).

    Article  PubMed  Google Scholar 

  18. L. J Machlin and A. Bendich, Free radical tissue damage: protective role of antioxidants nutrients,FASEB J. 4(6), 441–445 (1987).

    Google Scholar 

  19. M. A. S. Fernandes, I. Santana, C. Januario, L. Cunha, and C. R. Oliveira, Decreased Superoxide dismutase activity in erythrocytes from patients with Alzheimer’s disease,Med. Sci. Res. 21, 679–682 (1993).

    CAS  Google Scholar 

  20. H. X. Deng, A. Hentati, J. A. Tainer, Z. Iqbal, A. Cayabyab, W. Y. Hung, et al., Amyotrophic lateral sclerosis and structural defects in Cu,Zn Superoxide dismutase,Science 261, 1047–1057 (1993).

    Article  PubMed  CAS  Google Scholar 

  21. A. C. Alfrey, Aluminum,Advan. Clin. Chem. 23, 69–91 (1983).

    Article  CAS  Google Scholar 

  22. E. G. Gray and V. P. Whittaker, The isolation of nerve endings from brain: an electronmicroscopic study of cell fragments derived by homogenization and centrifugation,J. Anal. 96, 79–88 (1962).

    CAS  Google Scholar 

  23. V. P. Whittaker, I. A. Michaelson, and R. J. A. Kirland, The separation of synaptic vesicles from nerve-ending particles (“synaptosomes”),Biochem. J. 90, 293–303 (1964).

    PubMed  CAS  Google Scholar 

  24. R. E. Heikkila and F. Cabbat, A sensitive assay for Superoxide dismutase based on the autoxidation of 6-hydroxidopamine,Anal. Biochem. 75, 356–362 (1976).

    Article  PubMed  CAS  Google Scholar 

  25. R. E. Heikkila, Autoxidation of 6-hydroxydopamine, inCRC Handbook of Methods for Oxygen Radical Research, R. A. Greenwald, ed., CRC Press, Boca Raton, FL, pp. 217–220 (1985).

    Google Scholar 

  26. O. H. Lowry, N. J. Rosebrough, A. L. Farra, and R. J. Randall, Protein measurement with the folin phenol reagent,J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  27. B. J. Winer,Statistical Principles in Experimental Design, 2nd ed., McGraw-Hill, New York (1971).

    Google Scholar 

  28. W. F. Beyer and I. Fridovich, Assaying for Superoxide dismutase activity: some large consequences of minor changes in conditions,Anal. Biochem. 161, 559–566 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. R. Shainkin-Kestenbaun, A. J. Adlerberlyne, and C. Caruso, Effect of aluminum on Superoxide dismutase,Clin. Sci. 77, 463–466 (1989).

    Google Scholar 

  30. M. Ohtawa, M. Seko, and F. Takayama, Effect of aluminum ingestion on lipid peroxidation in rats,Chem. Pharm. Bull. 31, 1415–1418 (1983).

    PubMed  CAS  Google Scholar 

  31. G. Cherroret, D. Desor, M. F. Hutin, D. Burnel, B. Capolaghi, and P. R. Lehr, Effects of aluminum chloride on normal and uremic adult male rats: tissue distribution, brain choline acethyltransferase activity, and some biological variables,Biol. Trace Element Res. 54, 43–53 (1995).

    Article  Google Scholar 

  32. P. H. Chan, H. Kinouchi, C. J. Epstein, E. Carlson, S. F. Chen, S. Imaizumi, et al, Role of Superoxide dismutase in ischemic brain injury: reduction of oedema and infraction in transgenic mice following focal cerebral ischemia,Prog. Brain Res. 96, 97–104 (1993).

    PubMed  CAS  Google Scholar 

  33. P. Slalina, Y. Falkeborn, W. Frech, and A. Cedergren, Aluminum concentrations in the brain and bone of rats fed citric acid, aluminum citrate or aluminum hydroxide,Chem. Toxic. 22, 391–397 (1984).

    Article  Google Scholar 

  34. M. Cochran, J. Coates, and S. Neoh, The competitive equilibrium between aluminum and ferric ions for the binding sites of transferrin,FEBS Lett. 176, 129–132 (1984).

    Article  PubMed  CAS  Google Scholar 

  35. P. Galle, C. Meyrignac, and P. Heine, Dementia associated with high concentration of aluminum in brain cells. An ultrastructural and microanalytical study,C.R. Acad. Sci. (Paris) 299(13), 535–539 (1984).

    CAS  Google Scholar 

  36. K. P. Nordal, E. Dahl, Y. Thomassen, E. K. Brodwall, and J. Halse, Seasonal variations in serum aluminum concentrations,Pharmacol. Toxicol. 62, 80–83 (1988).

    PubMed  CAS  Google Scholar 

  37. R. Ondreicka, E. Ginter, and J. Kortus, Chronic toxicity of aluminum in rats and mice and its effects on phosphate metabolism,Br. J. Ind. Med. 23, 305–312 (1996).

    Google Scholar 

  38. G. Muller, M. F. Hutin, D. Burnel, and P. R. Lehr, Aluminum transfer through milk in female rats intoxicated by aluminum chloride,Biol. Trace Element Res. 34, 79–87 (1992).

    CAS  Google Scholar 

  39. P. H. Jung, Etude des éffets d’une intoxication au chlorure d’aluminium sur la consommation d’oxygène et les capacités d’apprentissage du rat Wistar, PhD thesis, Université de Metz, (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atienzar, F., Desor, D., Burnel, D. et al. Effect of aluminum on superoxide dismutase activity in the adult rat brain. Biol Trace Elem Res 65, 19–30 (1998). https://doi.org/10.1007/BF02784111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784111

Index entries

Navigation