Skip to main content
Log in

Fermentation of soybean meal withAspergillus usamii improves zinc availability in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Soybean meal was fermented withAspergillus usamii to improve zinc availability through the degradation of phytic acid. Rats fed a diet containing fermented soybean meal showed greater femoral zinc than did animals fed a diet containing regular soybean meal. Zinc solubility in the small intestine was higher in the rats fed fermented soybean meal than in the rats fed regular soybean meal. These results suggested that fermentation withAspergillus usamii improved zinc availability in dietary soybean meal, which was induced by the increase of zinc solubility in the small intestine. Adding the same amount of phytate that was contained in the regular soybean mealbased diet did not affect the amount of zinc present in rats fed a fermented soybean meal-based diet with sodium phytate. Phytase activity was found in fermented soybean meal, and this activity may degrade added phytate in fermented soybean meal-based diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Forbes, K. E. Weingartner, H. M. Parker, R. R. Bell, and J. W. Erdman Jr., Bioavailability to rats of zinc, magnesium and calcium in casein-, egg-, and soy protein-containing diets,J. Nutr. 109, 1652–1660 (1979).

    PubMed  CAS  Google Scholar 

  2. X. Lei, P. K. Ku, E. R. Miller, D. E. Ullrey, and M. T. Yokoyama, Supplemental microbial phytase improves bioavailability of dietary zinc to weaning pigs,J. Nutr. 123, 1117–1123 (1993).

    PubMed  CAS  Google Scholar 

  3. G. S. Lo, S. L. Settle, F. H. Steinke, and D. T. Hopkins, Effect of phytate:zinc molar ratio and isolated soybean protein on zinc bioavailability,J. Nutr. 111, 2223–2235 (1981).

    PubMed  CAS  Google Scholar 

  4. A.-S. Sandberg, H. Anderson, N.-G. Carlsson, and B. Sandstrom, Degradation products of bran phytate formed during digestion in the human small intestine: Effect of extrusion cooking on digestibility,J. Nutr. 117, 2061–2065 (1987).

    PubMed  CAS  Google Scholar 

  5. E. R. Morris and R. Ellis, Bioavailability to rats of iron and zinc in wheat bran: Response to low-phytate bran and effect of the phytate/zinc molar ratio,J. Nutr. 110, 2000–2010 (1980).

    PubMed  CAS  Google Scholar 

  6. E. M. Widdowson, Phytic acid and the preparation of food, Nature (Lond.)148, 219–220 (1941).

    CAS  Google Scholar 

  7. Z. Mroz, A. W. Jongbloed, and P. A. Kemme, Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs,J. Anim. Sci. 72, 126–132 (1994).

    PubMed  CAS  Google Scholar 

  8. A.-S. Sandberg and H. Anderson, Effect of dietary phytase on the digestion of phytate in the stomach and small intestine of humans,J. Nutr. 118, 469–473 (1988).

    PubMed  CAS  Google Scholar 

  9. G. H. Hartman, Removal of phytic acid from soy Protein,J. Am. Oil Chem. Soc. 56, 731–735 (1979).

    Article  CAS  Google Scholar 

  10. Y. Niiyama, S. Sakamoto, K. Okada, T. Matsuo, and K. Kimoto, Effects of phytic acid removal from SPI hydrolyzate on the calcium and zinc bioavailabilities in the growing rats,Nutr. Sci. Soy Protein, Jpn. 13, 80–85 (1992).

    CAS  Google Scholar 

  11. J. R. Zhou, E. J. Fordyce, V. Raboy, D. B. Dickinson, M.-S. Wong, R. A. Burns, and J. W. Erdman Jr., Reduction of phytic acid in soybean products improved zinc bioavailability in rats,J. Nutr. 122, 2466–2473 (1992).

    PubMed  CAS  Google Scholar 

  12. A. Ilyas, M. Hirabayashi, T. Matsui, H. Yano, T. Kikushima, M. Takebe, and K. Hayakawa, The note on the removal of phytic acid in soybean meal usingAspergillus usamii, Asian Aust. J. Anim. Sci. 8, 135–138 (1995).

    CAS  Google Scholar 

  13. AOAC,Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. Phytic acid in foods. Anion-exchange method., sec. 986.11, AOAC, Washington, DC, pp. 800 (1990).

    Google Scholar 

  14. Y. W. Han, D. J. Gallagher, and A. G. Wilfred, Phytase production by Aspergillus ficuum on semisolid substrate,J. Ind. Microbiol. 2, 195–200 (1987).

    Article  CAS  Google Scholar 

  15. T. Takahashi, True inorganic phosphorus contents in tissues, determination of creatine phosphates, and the actions of phosphoamidase and creatine phosphokinase in swine sperm,Seikagaku 26, 690–698 (1955).

    Google Scholar 

  16. SAS Institute Inc.,SAS User’s Guide: Statistics, 5th ed. SAS Institute, Cary, NC (1985).

    Google Scholar 

  17. National Research Council,Nutrient Requirements of Laboratory Animals, 4th ed. National Academy, Washington, DC (1995).

    Google Scholar 

  18. S. H. Shanklin, E. R. Miller, D. E. Ullrey, J. A. Hoefer, and R. W. Luecke, Zinc requirement of baby pigs on casein diets,J. Nutr. 96, 101–108 (1968).

    CAS  Google Scholar 

  19. National Research Council,Nutrient Requirements of Swine, 9th ed. National Academy, Washington, DC (1988).

    Google Scholar 

  20. A. R. De Boland, G. B. Garner, and B. L. O’Dell, Identification and properties of “phytate” in cereal grains and oilseed products,J. Agricultural Food them. 23, 1186–1189 (1975).

    Article  Google Scholar 

  21. R. M. Forbes, H. M. Parker, and J. W. Erdman, Jr., Effects of dietary phytate, calcium and magnesium levels on zinc bioavailability to rats,J. Nutr. 114, 1421–1425 (1984).

    PubMed  CAS  Google Scholar 

  22. T. Yoshida, S. Shinoda, Y. Kawaai, A. Iwabuchi, and M. Mutai, The effect of gut flora on the utilization of Ca, P and Zn in rats fed a diet containing phytate,Agricultural Biol. Chem. 49, 2199–2202 (1985).

    CAS  Google Scholar 

  23. E. T. Champagne and B. Q. Phyllippy, Effects of pH on calcium, zinc, and phytate solubilities and complexes following in vitro digestions of soy protein isolate,J. Food Sci. 54, 587–592 (1989).

    Article  CAS  Google Scholar 

  24. S. Shinoda and T. Yoshida, Influence of sodium phytate and gut microflora on the solubility of Ca, Mg and Zn in the rat digestive tract,Nutr. Rep. Int. 40, 909–922 (1989).

    CAS  Google Scholar 

  25. D. L. Antonson, A. J. Barak, and J. A. Vanderhoo, Determination of the site of zinc absorption in rat small intestine,J. Nutr. 109, 142–147 (1979).

    PubMed  CAS  Google Scholar 

  26. G. L. Cromwell, T. S. Stahly, R. D. Coffey, H. J. Monegue, and J. H. Randolph, Efficiency of phytase in improving the bioavailability of phosphorus in soybean meal and corn-soybean meal diets for pigs,J. Animal Sci. 71, 1831–1840 (1993).

    CAS  Google Scholar 

  27. G. Rimbach and J. Pallauf, Enhancement of zinc utilization from phytate-rich soy protein isolate by microbial phytase,Z. Ernährungswiss. 32, 308–315 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. J. J. Rackis, J. E. McGhee, and D. H. Honig, Processing soybeans into food: Selected aspects of nutrition and flavor,Am. J. Oil Chem. Soc. 52, 249A-253A (1975).

    Article  CAS  Google Scholar 

  29. J. J. Rackis and R. L. Anderson, Mineral availability in soyprotein products,Food Prod. Dev. 11, 38–44 (1977).

    CAS  Google Scholar 

  30. B. L. O’Dell and J. E. Savage, Effect of phytic acid on zinc availability,P.S.E.B.M. 103, 304–306 (1960).

    CAS  Google Scholar 

  31. E. Carnovale, E. Lugaro, and B. G. Lombardi, Phytic acid in faba bean and pea: effect on protein availability,Cereal Chem. 65, 114–117 (1988).

    CAS  Google Scholar 

  32. M. E. Nyman and I. M. Bjorck, In vivo effects of phytic acid and polyphenols on the bioavailability of polysaccharides and other nutrients,J. Food Sci. 54, 1332–1335, 1363 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirabayashi, M., Matsui, T. & Yano, H. Fermentation of soybean meal withAspergillus usamii improves zinc availability in rats. Biol Trace Elem Res 61, 227–234 (1998). https://doi.org/10.1007/BF02784033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784033

Index entries

Navigation