Advertisement

Biological Trace Element Research

, Volume 62, Issue 3, pp 183–197 | Cite as

Determination of reference ranges for elements in human scalp hair

  • Mary Ellen Druyan
  • Dean Bass
  • Richard Puchyr
  • Karen Urek
  • David Quig
  • Emmett Harmon
  • William Marquardt
Article

Abstract

Expected values, reference ranges, or reference limits are necessary to enable clinicians to apply analytical chemical data in the delivery of health care. Determination of references ranges is not straightforward in terms of either selecting a reference population or performing statistical analysis. In light of logistical, scientific, and economic obstacles, it is understandable that clinical laboratories often combine approaches in developing health associated reference values. A laboratory may choose to:
  1. 1.

    Validate either reference ranges of other laboratories or published data from clinical research or both, through comparison of patients test data.

     
  2. 2.

    Base the laboratory’s reference values on statistical analysis of results from specimens assayed by the clinical reference laboratory itself.

     
  3. 3.

    Adopt standards or recommendations of regulatory agencies and governmental bodies.

     
  4. 4.

    Initiate population studies to validate transferred reference ranges or to determine them anew.

     

Effects of external contamination and anecdotal information from clinicians may be considered.

The clinical utility of hair analysis is well accepted for some elements. For others, it remains in the realm of clinical investigation. This article elucidates an approach for establishment of reference ranges for elements in human scalp hair. Observed levels of analytes from hair specimens from both our laboratory’s total patient population and from a physician-defined healthy American population have been evaluated. Examination of levels of elements often associated with toxicity serves to exemplify the process of determining reference ranges in hair. In addition the approach serves as a model for setting reference ranges for analytes in a variety of matrices.

Index Entries

Hair analysis elements minerals reference range reference limit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    How to define and determine reference intervals in the clinical laboratory; approved guideline, NCCLS (National Committee for Clinical Laboratory Standards)15(4), 1–4, June 1995.Google Scholar
  2. 2.
    M. K. Sandford and G. E. Kissling, Multivariate analyses of elemental hair concentrations from a medieval Nubian population,Am. J. Phys. Anthropol. 95(1), 41–52 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Chai, W. Feng, Q. Qian, M. Guan, X. Li, Y. Lu, et al., Total and methyl mercury levels in human scalp hairs of typical populations in China by NAA, GC(EC), and other techniques,Biol. Trace Element Res. 43-45, 423–433 (1994).Google Scholar
  4. 4.
    H. Mussalo-Rauhamaa, M. Kantola, K. Seppanen, L. Soininen, and M. Koivusalo, Trends in the concentrations of mercury, copper, zinc and selenium in inhabitants of north-eastern Finnish Lapland in 1982–1991. A pilot study,Arctic Med. Res. 55(2), 83–91 (1996).PubMedGoogle Scholar
  5. 5.
    R. K. Dogra, R. C. Murthy, A. L. Srivastava, J. S. Gaur, L. J. Shukla, and B. M. Varmani, Cattle mortality in the Thane district, India: a study of cause/effect relationships,Arch. Environ. Contam. Toxicol. 30(2), 292–297 (1996).PubMedGoogle Scholar
  6. 6.
    V. Bencko, T. Geist, D. Arbetova, D. M. Dharmadikari, and E. Svandova,. Biological monitoring of environmental pollution and human exposure to some trace elements,J. Hygiene, Epidemiol., Microbiol. Immunol. 30, 1–10 (1986).Google Scholar
  7. 7.
    S. C. Foo, N. Y. Khoo, A. Heng, L. H. Chua, S. E. Chia, C. N. Ong, et al., Metals in hair as biological indices for exposure,Int. Arch. Occup. Environ. Health 65, S83-S86 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    Y. S. Ryabukhin, Nuclear-based methods for the analysis of trace element pollutants in human hair,J. Radioanal. Chem. 60(1), 7–30 (1980).CrossRefGoogle Scholar
  9. 9.
    A. Taylor, Usefulness of measurements of trace elements in hair,Ann. Clin. Biochem. 23, 364–378 (1986).PubMedGoogle Scholar
  10. 10.
    R. F. Puchyr, D. A. Bass, R. Gajewski, M. Calvin, W. Marquardt, M. E. Druyan, et al, Preparation of hair for elemental measurement by ICP-MS, this issue,Biol. Trace Element Res., in press.Google Scholar
  11. 11.
    Y. S. Ryabukin, Activation analysis of hair as an indicator of contamination of man by environmental trace element pollutants, IAEA report, 1AEA/RL/50, Vienna (1978).Google Scholar
  12. 12.
    S. J. Haswell and D. Barclay, On-line microwave digestion of slurry samples with direct flame atomic absorption spectrometric elemental detection,Analyst 117, 117–120 (1992).CrossRefGoogle Scholar
  13. 13.
    E. S. Beary, P. J. Paulsen, L. B. Jassie, and J. D. Fasset, Determination of environmental lead using continuous-flow microwave digestion isotope dilution inductively coupled plasma mass spectrometry,Anal. Chem. 69, 758–766 (1997).CrossRefGoogle Scholar
  14. 14.
    M. E. Druyan, R. F. Puchyr, A. W. Fisher, E. Harmon, K. E. Urek, D. W. Quig, et al., Interpretation of elemental analyses for clinical application, paper presented at Great Lakes Regional Meeting, American Chemical Society, May 28–30 (1997).Google Scholar
  15. 15.
    R. A. Buckley and I. E. Dreosti, Radioisotopic studies concerning the efficacy of standard washing procedures for the cleansing of hair before zinc analysis,Am. J. Clin. Nutr. 40, 840–846 (1984).PubMedGoogle Scholar
  16. 16.
    S. Salmela, E. Vuori, and J. O. Kilpio, The effect of washing procedures on trace element content of human hair,Anal. Chim. Acta. 125, 1131–1137 (1981).CrossRefGoogle Scholar
  17. 17.
    J. M. McKenzie, Alteration of the zinc and copper concentration of hair,Am J. Clin. Nutr. 31, 470–76 (1978).PubMedGoogle Scholar
  18. 18.
    D. C. Hilderbrand and D. H. White, Trace element analysis in hair: an evaluation,Clin. Chem. 20, 148–151 (1974).PubMedGoogle Scholar
  19. 19.
    G. S. Assarian and D. Aberleas, Effect of washing procedures on trace element content of hair,Clin. Chan. 23, 1771, 1772 (1972).Google Scholar
  20. 20.
    W. W. Harrison, J. P. Yarachek, and C. A. Benson, The determination of trace elements in human hair by atomic absorption spectroscopy,Clin. Chim. Acta 23, 83–91 (1969).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Ekins and P. Edwards, Point on the meaning of “sensitivity,”Clin. Chem. 43(10), 1824–1827 (1997).PubMedGoogle Scholar
  22. 22.
    D. Krieger, S. Krieger, O. Jansen, P. Gass, L. Theilmann, and H. Lichtnecker, Manganese and chronic hepatic encephalopathy,The Lancet 346, 270–274 (1995).CrossRefGoogle Scholar
  23. 23.
    International Programme on Chemical Safety: Environmental Health Criteria 118 Inorganic Mercury, World Health Organization, Geneva, pp. 60, 61 (1991).Google Scholar
  24. 24.
    J. T. Salonen, K. Seppänen, K. Nyssönen, H. Korpela, J. Kauhanen, M. Kantola, et al, Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men,Circulation 91(3), 646–655 (1995).Google Scholar
  25. 25.
    Inorganic Mercury, Environmental Health Criteria 118, World Health Organization, Geneva (1991).Google Scholar
  26. 26.
    G.-G. Elinder, L. Gerhardsson, and G. Oberdoerster, Biological monitoring of metals, in:Biological Monitoring of Metals, T. W. Clarkson, L. Friberg, G. F. Nordberg, and P. Sager, eds., Plenum, London, pp. 1–71 (1988).Google Scholar
  27. 27.
    SPSS Base 7.5,Applications Guide, SPSS Inc., Chicago, IL, pp. 27, 28 (1997).Google Scholar
  28. 28.
    W. W. Daniel,Biostatistics: A Foundation for Analysis in the Health Sciences, 3rd ed.,Wiley Series in Probability and Mathematical Statistics-Applied, Wiley, New York (1983).Google Scholar
  29. 29.
    D. Das, A. Chatterjee, B. K. Mandai, G. Samanta, D. Chakraborti, and B. Chanda, Arsenic in ground water in six districts of West Bengal, India; the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue of the affected people,Analyst 12(3), 917–924 (1995).CrossRefGoogle Scholar
  30. 30.
    R. Heaven, M. Duncan, and S. Vukelja, S., Arsenic intoxication presenting with macrocytosis and peripheral neuropathy, without anemia,Acta Haematol. 92(3), 142, 143 (1994).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Marlow and C. Moon, Correlations of metal-metal interactions as measured in hair on childhood intelligence,J. Adv. Med. 1(4), 195–203 (1988).Google Scholar
  32. 32.
    J. J. Powell, S. M. Greenfield, R. P. Thompson, J. A. Cargnello, M. D. Kindall, J. P. Landsberg, et al., Assessment of Toxic metal exposure following the Camelford water pollution incident; evidence of acute mobilization of lead into drinking water,Analyst 120(3), 793–798 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    B. Minder, E. A. Das-Smaal, E. F. Brand, and J. F. Orlebeke, Exposure to lead and specific attentional problems in school children,J. Learning Disabilities 27(6), 393–399 (1994).Google Scholar
  34. 34.
    F. Watt, J. Landsberg, J. J. Powell, R. J. Ede, R. P. Thompson, and J. A. Cargnello, Analysis of copper and lead in hair using the nuclear microscope; results from normal subjects and patients with Wilson’s disease and lead poisoning,Analyst 120(3), 789–791 (1995).PubMedCrossRefGoogle Scholar
  35. 35.
    O. Malm, F. J. Branches, H. Akagi, M. B. Castro, W. C. Pfeiffer, M. Harada, et al., Mercury and methylmercury in fish and human hair from the Tapajos River basin, Brazil,Sci. Total Environ. 175(20), 141–150 (1995).PubMedGoogle Scholar
  36. 36.
    L. Holsbeek, H. K. Das, and C. R. Joiris, Mercury in human hair and relation to fish consumption,Bangladesh. Sci. Total Environ. 186(3), 181–188 (1996).CrossRefGoogle Scholar
  37. 37.
    T. Abe, R. Ohtsuka., T. Hongo, T. Suzuki, C. Tohyama, A. Nakano, et al., High hair and urinary mercury levels of fish eaters in the nonpolluted environment of Papua New Guinea,Arch. Environ. Health 50(5), 367–373 (1995).PubMedCrossRefGoogle Scholar
  38. 38.
    W. Ashraf, M. Jaffar, D. Mohammed, and J. Iqbal, Utilization of scalp hair for evaluating epilepsy in male and female groups of the Pakistan population,Sci. Total Environ. 164(1), 69–73 (1995).PubMedCrossRefGoogle Scholar
  39. 39.
    E. Contiero and M. Folin, Trace elements nutritional status. Use of hair as a diagnostic tool,Biol. Trace Element Res. 40(2), 151–160 (1994).Google Scholar
  40. 40.
    S. Loranger and J. Zayed, Environmental and occupational exposure to manganese: a multimedia assessment,Int. Arch. Occup. Environ. Health 67(2), 101–110 (1995).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Chatterjee, B. B. Mukherjee, K. De, A. K. Das, and S.K. Basu, Biological trace metal levels of X-ray technicians’ blood and hair,Trace Elem. Res. 46(3), 211–227 (1994).Google Scholar
  42. 42.
    National Research Council,Recommended Dietary Allowances, 10th ed. National Academy Press, Washington, DC (1989).Google Scholar
  43. 43.
    L. W. Chang, Toxico-neurology and neuropathology induced by metals, inToxicology of Metals, L. W. Chang, ed., CRC, Boca Raton, New York, pp. 511–535 (1996).Google Scholar
  44. 44.
    E. J. Massaro, The developmental cytotoxicity of mercurials, inToxicology of Metals, L. W. Chang, ed., CRC, Boca Raton, New York, pp. 1047–1081 (1996).Google Scholar
  45. 45.
    D. W. Jenkins,Biological Monitoring of Toxic Trace Metals, vol. 1.,Biological Monitoring and Surveillance, EPA Document 600—80-089, Las Vegas, NE (1980).Google Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Mary Ellen Druyan
    • 1
  • Dean Bass
    • 1
  • Richard Puchyr
    • 1
  • Karen Urek
    • 1
  • David Quig
    • 1
  • Emmett Harmon
    • 1
  • William Marquardt
    • 1
  1. 1.Doctor’s Data, Inc.West Chicago

Personalised recommendations