Skip to main content
Log in

Accelerated volatilization rates of selenium from different soils

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se), an element found naturally in a variety of soils, can accumulate in drainage water of lands under intensive irrigation, even reaching levels that are toxic to mammals and birds. Volatilization of Se by soil microorganisms into dimethylselenide (DMSe) can be enhanced by certain soil amendments and, thus, be used as a soil remediation process. In an 8-wk laboratory study, five soils from California and one from Germany were spiked with75SeO3 2- (22.3 mg/kg Se). Two amino acids (DL-homocysteine and L-methionine), a carbohydrate (pectin), and a protein (zein) were tested as soil amendments. Gaseous75Se emissions were trapped with activated carbon and measured in a gamma counter. Depending on soil type, the cumulative volatilization from the control flasks varied between 1.2% and 9.0% of applied75Se. Both zein and L-methionine strongly increased volatilization (max. 43% of75Se applied), whereas DL-homocysteine had a much smaller stimulating effect. Pectin showed a moderate effect, but enhanced Se volatilization rates were sustained much longer when compared to the zein amendment. Volatilization rates of Se followed a simple first-order reaction. Gaseous Se emission in the soils treated with L-methionine yielded an S-shaped curve, which fit a growth-modified first-order rate model. Although zein and L-methionine were the most favorable treatments enhancing Se volatilization, all six soils responded differently to the soil amendments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Rosenfeld and O. A. Beath,Selenium: Geobotany, Biochemistry, Toxicity, and Nutrition, Academic, New York (1964).

    Google Scholar 

  2. H. F. Mayland, L. F. James, K. E. Panter, and J. L. Sonderegger, inSelenium in Agriculture and the Environment, L. W. Jacobs, ed., Special Publication No. 23, Soil Science Society of America, Madison, WI, pp. 15–50 (1989).

    Google Scholar 

  3. P. M. Haygarth, K. C. Jones, and A. F. Harrison,Sci. Total Environ. 103, 89–111 (1991).

    Article  CAS  Google Scholar 

  4. M. M. McNeal and L. S. Balistrieri, inSelenium in Agriculture and the Environment, L. W. Jacobs, ed., SSSA Special Publication No. 23, American Society of Agronomy, and Soil Science Society of America, Madison, WI, pp. 1–13 (1989).

    Google Scholar 

  5. W. T. Frankenberger, Jr. and U. Karlson, inBiogeochemistry of Trace Metals, D. C. Adriano, ed., Lewis Publishers, Boca Raton, FL, pp. 365–381 (1992).

    Google Scholar 

  6. H. M. Ohlendorf, D. J. Hoffman, M. K. Saiki, and T. W. Aldrich,Sci. Total Environ. 52, 49–63 (1986).

    Article  CAS  Google Scholar 

  7. H. M. Ohlendorf, A. W. Kilness, J. L. Simmons, J. K. Stroud, D. J. Hoffman, and J. F. Moore,J. Toxicol. Environ. Health 24, 7–92 (1988).

    Article  Google Scholar 

  8. H. W. Lakin, inSelenium in Agriculture, M. S. Anderson, H. W. Lakin, K. C. Beeson, Floyd F. Smith, and Edward Thacker, eds., USDA Handbook 200, U.S. Government Printing Office, Washington, DC, pp. 3–12 (1961).

    Google Scholar 

  9. J. W. Anderson and A. R. Scarf, inMetals and Micronutrients: Uptake and Utilization by Plants, D. A. Robb and W. S. Pierpoint, eds., Academic, New York, pp. 241–275 (1983).

    Google Scholar 

  10. M. A. Elrashidi, D. C. Adriano, and W. L. Lindsay, inSelenium in Agriculture and the Environment, L. W. Jacobs, ed., Special Publication No. 23, Soil Science Society of America, Madison, WI, pp. 51–63 (1989).

    Google Scholar 

  11. J. P. Skorupa, inEnvironmental Chemistry of Selenium, W. T. Frankenberger, Jr. and R. A. Ensberg, eds., Marcel Dekker, New York, pp. 315–354 (1998).

    Google Scholar 

  12. D. J. Reuter,Agric. Rec. 2, 44–50 (1975).

    Google Scholar 

  13. P. M. Haygarth, inSelenium in the Environment, 1st ed., W. T. Frankenberger and S. Benson, eds., Marcel Dekker, New York, pp. 1–24 (1994).

    Google Scholar 

  14. F. Challenger,Chem. Rev. 36, 315–361 (1945).

    Article  CAS  Google Scholar 

  15. G. M. Abu-Erreish, E. I. Whitehead, and O. E. Olson,Soil Sci. 106, 415–420 (1968).

    Article  CAS  Google Scholar 

  16. L. Barkes and R. W. Fleming,Bull. Environ. Contamin. Toxicol. 12, 308–311 (1974).

    Article  CAS  Google Scholar 

  17. J. W. Doran, inAdvances in Microbial Ecology, Volume 6, K. V. Marshall, ed., Plenum, New York, pp. 1–31 (1982).

    Google Scholar 

  18. U. Karlson and W. T. Frankenberger, Jr.,Soil Sci. Soc. Am. J. 52, 1640–1644 (1988).

    Article  CAS  Google Scholar 

  19. J. W. Doran and M. Alexander,Soil Sci. Soc. Am. J. 40, 687–690 (1976).

    Article  CAS  Google Scholar 

  20. U. Karlson and W. T. Frankenberger, Jr.,Soil Sci. Soc. Am. J. 53, 749–753 (1989).

    Article  CAS  Google Scholar 

  21. E. T. Thompson-Eagle, W. T. Frankenberger, Jr., and U. Karlson,Appl. Environ. Microbiol. 55, 1406–1413 (1989).

    PubMed  CAS  Google Scholar 

  22. U. Karlson, W. T. Frankenberger, and W. F. Spencer,J. Chem. Eng. Data 39, 608–610 (1994).

    Article  CAS  Google Scholar 

  23. K. P. McConnel and O. W. Portman,J. Biol. Chem. 195, 277–282 (1952).

    Google Scholar 

  24. K. P. McConnel and O. W. Portman,Proc. Soc. Exp. Biol. Med. 79, 230–231 (1952).

    Google Scholar 

  25. Y. K. Chau, P. T. S. Wong, B. A. Silverberg, P. L. Luxon, and G. A. Bengert,Science 192, 1130–1131 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. R. Zieve and P. J. Peterson,Sci. Total Environ. 19, 277–284 (1981).

    Article  CAS  Google Scholar 

  27. W. T. Frankenberger, Jr. and U. Karlson, inSelenium in the Environment, W. T. Frankenberger and S. Benson, eds., Marcel Dekker, New York, pp. 369–387 (1994).

    Google Scholar 

  28. W. T. Frankenberger, Jr. and U. Karlson,Soil Sci. Soc. Am. J. 53, 1435–1442 (1989).

    Article  CAS  Google Scholar 

  29. J. G. Chasteer,Appl. Organometal. Chem. 7, 335–342 (1993).

    Article  Google Scholar 

  30. E. T. Thompson-Eagle and W. T. Frankenberger, Jr.,J. Environ. Qual. 19, 125–131 (1990).

    Article  CAS  Google Scholar 

  31. A. J. Francis, J. M. Duxbury, and M. Alexander,Appl. Microbiol. 28, 248–250 (1974).

    PubMed  CAS  Google Scholar 

  32. J. W. Doran and M. Alexander,Appl. Environ. Microbiol. 33, 31–37 (1977).

    PubMed  CAS  Google Scholar 

  33. A. A. Hamdy and G. Gissel-Nielsen,Z. Pflanzenernähr. Bodenk. 6, 671–678 (1976).

    Google Scholar 

  34. T. J. Ganje and E. I. Whitehead,Proc. South Dakota Acad. Sci. 37, 81–84 (1958).

    CAS  Google Scholar 

  35. S. J. Calderone, W. T. Frankenberger, Jr., D. R. Parker, and U. Karlson,Soil Biol. Biochem. 22, 615–620 (1990).

    Article  CAS  Google Scholar 

  36. W. T. Frankenberger, Jr. and U. Karlson,Chemtech 24, 45–51 (1994).

    CAS  Google Scholar 

  37. E. T. Thompson-Eagle and W. T. Frankenberger, Jr., inAdvances in Soil Science, Volume 17, R. Lal and B. A. Stewart, eds., Springer-Verlag, New York, pp. 261–310 (1992).

    Google Scholar 

  38. E. T. Thompson-Eagle and W. T. Frankenberger, Jr.,Environ. Toxicol. Chem. 9, 1453–1462 (1990).

    Article  CAS  Google Scholar 

  39. J. M. Wood, F. S. Kennedy, and C. G. Rosen,Nature 220, 173–174 (1968).

    Article  PubMed  CAS  Google Scholar 

  40. U. Karlson and W. T. Frankenberger, Jr.,Soil Sci. Soc. Am. J. 52, 678–681 (1988).

    Article  CAS  Google Scholar 

  41. B. G. Lewis, C. M. Johnson, and T. C. Broyer,Plant Soil 40, 107–118 (1974).

    Article  CAS  Google Scholar 

  42. B. G. Lewis, C. M. Johnson, and C. C. Delwiche,J. Agric. Food Chem. 14, 638–640 (1966).

    Article  CAS  Google Scholar 

  43. T. K. Tokunaga, S. R. Sutton, and S. Bajt,Soil Sci. 158, 421–34 (1994).

    Article  CAS  Google Scholar 

  44. J. L. Smith, R. R. Schnabel, B. L. McNeal, and G. S. Campbell,Soil Sci. Soc. Am. J. 44, 996–1000 (1980).

    Article  CAS  Google Scholar 

  45. U. Karlson and W. T. Frankenberger, Jr.,Soil Sci. 149, 56–61 (1990).

    Article  CAS  Google Scholar 

  46. P. T. Zawislanski and M. Zavarin,Soil Sci. Soc. Am. J. 60, 791–800 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stork, A., Jury, W.A. & Frankenberger, W.T. Accelerated volatilization rates of selenium from different soils. Biol Trace Elem Res 69, 217–234 (1999). https://doi.org/10.1007/BF02783874

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783874

Index entries

Navigation