Advertisement

Biological Trace Element Research

, Volume 69, Issue 2, pp 151–159 | Cite as

Regional distribution of metallothionein, zinc, and copper in the brain of different strains of rats

  • Shin-Ichi Ono
  • M. George Cherian
Original Articles

Abstract

The regional brain distribution of metallothionein (MT), zinc, and copper in the brain was determined in nine anatomical regions (olfactory bulb, cortex, corpus striatum, hippocampus, thalamus plus hypothalamus, pons plus medulla oblongata, cerebellum, midbrain, and white matter) and was compared between two different strains of rat (Sprague-Dawley [SD] and Lewis). No significant difference was observed in the whole-brain MT level between the two strains (17.8 ± 3.4 μg/g in SD rats and 20.3 ± 2.3 μg/g in Lewis rats). In SD rats, however, MT was more highly expressed in the white matter than in the other regions studied. In contrast, MT concentration was highest in the cortex and lowest in the olfactory bulb in Lewis rats. The MT levels in the cortex, corpus striatum, hippocampus, and thalamus plus hypothalamus were significantly lower in SD rats than in Lewis rats. In both strains, the olfactory bulb contained markedly higher levels of both zinc and copper than the other regions (27.9 ±6.8 μg/g zinc in SD rats and 27.6 ± 6.9 μg/g zinc in Lewis rats, and 5.2 ± 1.5 μg/g copper in SD rats and 11.1 ± 4.8 μg/g copper in Lewis rats). The next high-est zinc levels were seen in the hippocampus, whereas the next highest copper levels were in the corpus striatum in both SD and Lewis rats. The high levels of zinc and copper in the olfactory bulb were not accompanied by concomitant high MT concentrations. These results indicate that the strain of rat as well as the anatomical brain region should be taken into account in MT and metal distribution studies. However, the highest concentrations of zinc and copper in olfactory bulb were common to both SD and Lewis rats. The discrepancy between MT and the metal levels in olfactory bulb suggests a role for other proteins in addition to MT in the homeostatic control of zinc and copper.

Index Entries

Metallothionein zinc copper zinc toxicity olfactory bulb rat brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Cherian and H. M. Chan, Biological functions of metallothionein. A review, inMetallothionein III. Biological Roles and Medical Implications, K. T. Suzuki, N. Imura, and M. Kimura, eds., Birkhauser Verlag, Boston, pp. 87–109 (1993).Google Scholar
  2. 2.
    M. Aschner, M. G. Cherian, C. D. Klaassen, R. D. Palmiter, J. C. Erickson, and A. I. Bush, Metallothioneins in brain. The role in physiology and pathology,Toxicol. Appl. Pharmacol. 142, 229–242 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Sato and I. Bremner, Oxygen free radicals and metallothionein,Free Radical Biol. Med. 14, 325–337 (1993).CrossRefGoogle Scholar
  4. 4.
    J. H. R. Kagi, Evolution, structure and chemical activity of class I metallothioneins. An overview, inMetallothionein III. Biological Roles and Medical Implications, K. T. Suzuki, N. Imura, and M. Kimura, eds., Birkhauser Verlag, Boston, pp. 29–55 (1993).Google Scholar
  5. 5.
    M. Aschner, The functional significance of brain metallothionein,FASEB J. 10, 1129–1136 (1996).PubMedGoogle Scholar
  6. 6.
    Y. Uchida, K. Takio, K. Titani, Y. Ihara, and M. Tomonaga, The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein,Neuron 7, 337–347 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    B. A. Masters, C. J. Quaife, J. C. Erickson, E. J. Kelly, G. J. Froelick, B. R. Zambrowicz, et al., Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles,J. Neurosci. 14, 5844–5857 (1994).PubMedGoogle Scholar
  8. 8.
    J. R. Connor, R Tucker, M. Johnson, and B. Snyder, Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease,Neurosci. Lett. 159, 80–88 (1993).CrossRefGoogle Scholar
  9. 9.
    N. Nishimura, H. Nishimura, A. Ghaffar, and C. Tohyama, Localization of metallothionein in the brain of rat and mouse,J. Histochem. Cytochem. 40, 309–315 (1992).PubMedGoogle Scholar
  10. 10.
    S. Choudhuri, K. K. Kramer, N. E. Berman, T. P. Dalton, G. K. Andrews, and C. D. Klaassen, Constitutive expression of metallothionein genes in mouse brain,Toxicol. Appl. Pharmacol. 131, 144–154 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Zheng, N. E. J. Berman, and C. D. Klaassen, Chemical modulation of metallothionein I and III mRNA in mouse brain,Neurochem. Int. 27, 43–58 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    S. I. Ono, D. J. Koropatnick, and M. G. Cherian, Regional brain distribution of metallothionein, zinc and copper in toxic milk mutant and transgenic mice,Toxicology 124, 1–10 (1997).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Onosaka and M. G. Cherian, Comparison of metallothionein determination by polarographic and cadmium-saturation methods,Toxicol. Appl. Pharmacol. 63, 270–274 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    D. L. Eaton and M. G. Cherian, Determination of metallothionein in tissues by cadmium-haemoglobin affinity assay,Methods Enzymol. 205, 83–88 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    D. R. Winge and K.-A. Miklossy, Domain nature of metallothionein,J. Biol. Chem. 7, 3471–3476 (1982).Google Scholar
  16. 16.
    J. Hidalgo, L. Campmany, O. Marti, and A. Armario, Metallothionein-I induction by stress in specific brain areas,Neurochem. Res. 16, 1145–1148 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Gasull, M. Giralt, J. Hernandez, P. Martinez, I. Bremner, and J. Hidalgo, Regulation of metallothionein concentrations in rat brain. Effect of glucocortocoids, zinc, copper, and endotoxin,Am. J. Physiol. 266, E760-E767 (1994).PubMedGoogle Scholar
  18. 18.
    R. Hao, D. R. Cerutis, H. S. Blaxall, J. F. Rodriguez-Sierra, R. F. Pfeiffer, and M. Ebadi, Distribution of zinc metallothionein I mRNA in rat brain usingin situ hybridization,Neurochem. Res. 19, 761–767 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Donaldson, T. St. Pierre, J. L. Minnich, and A. Barbeau, Determination of Na+, K+, Mg2+, Cu2+, Zn2+, and Mn2+ in rat brain regions,Can. J. Biochem. 51, 87–92 (1973).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Donaldson, T. Cloutier, J. L. Minnich, and A. Barbeau, Trace metals and biogenic amines in rat brain,Adv. Neurol. 5, 245–252 (1974).PubMedGoogle Scholar
  21. 21.
    R. Kishi, T. Ikeda, H. Miyake, E. Uchino, T. Tsuzuki, and K. Inoue, Regional distribution of lead, zinc, iron, and copper in suckling and adult rat brains,Brain Res. 251, 180–182 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J. R. Prohaska, Functions of trace elements in brain metabolism,Physiol. Rev. 67, 858–901 (1987).PubMedGoogle Scholar
  23. 23.
    J. C. Wallwork, D. B. Milne, R. L. Sims, and H. H. Sandstead, Severe zinc deficiency. Effects on the distribution of nine elements (potassium, phosphorus, sodium, magnesium, calcium, iron, zinc, copper and manganese) in regions of the rat brain,J. Nutr. 113, 1895–1905 (1983).PubMedGoogle Scholar
  24. 24.
    K. Gulya, G. L. Kovacs, and P. Kasa, Partial depletion of endogenous zinc level by (D-PEN2, D-PEN5) enkephalin in the rat brain,Life Sci. 48, PL57-PL62 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    I. E. Dreosti, Zinc and the central nervous system, inNeurobiology of the Trace Elements. Volume I. Trace Element Neurobiology and Deficiencies, I. E. Dreosti and R. M. Smith eds., Humana Press, Clifton, NJ, pp. 135–162 (1983).Google Scholar
  26. 26.
    E. S. Halas, Behavioral changes accompanying zinc deficiency in animals, inNeurobiology of the Trace Elements. Volume I. Trace Element Neurobiology and Deficiencies, I. E. Dreosti and R. M. Smith eds., Humana Press, Clifton, NJ, pp. 213–243 (1983).Google Scholar
  27. 27.
    H. H. Sandstead, Understanding zinc. Recent observations and interpretations,J. Lab. Clin. Med. 124, 322–327 (1994).PubMedGoogle Scholar
  28. 28.
    J.-Y. Koh and D. W. Choi, Zinc toxicity on cultured cortical neurons. Induction ofN-methyl-d-aspartate receptors,Neuroscience 60, 1049–1057 (1994).PubMedCrossRefGoogle Scholar
  29. 29.
    M. P. Cuajungco and G. J. Lees, Zinc metabolism in the brain. Relevance to human neurodegenerative disorders,Neurobiol. Dis. 4, 137–169 (1997).PubMedCrossRefGoogle Scholar
  30. 30.
    S. I. Ono and M. G. Cherian, Changes in brain metallothionein and zinc during development in transgenic mice,Biol. Trace Element Res. 61, 41–49 (1998).CrossRefGoogle Scholar
  31. 31.
    C. J. Frederickson and D. W. Moncrieff, Zinc-containing neurons,Biol. Signals 3, 127–139 (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Legendre and G. L. Westbrook, Ifenprodil blocks N-methyl-d-aspartate receptors by a two-component mechanism,Mol. Pharmacol. 40, 289–298 (1991).PubMedGoogle Scholar
  33. 33.
    D. A. Berkowicz, P. G. Trombley, and G. M. Shepherd, Evidence for glutamate as the olfactory receptor cell neurotransmitter,J. Neurophysiol. 71, 2557–2561 (1994).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Shin-Ichi Ono
    • 1
  • M. George Cherian
    • 2
  1. 1.Department of NeurologyNihon University School of MedicineTokyoJapan
  2. 2.Department of PathologyUniversity of Western OntarioLondonCanada

Personalised recommendations