Skip to main content
Log in

Influence of dietary carbohydrate on zinc-deficiency-induced changes in oxidative defense mechanisms and tissue oxidative damage in rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effect of dietary carbohydrate type on the expression of zinc (Zn) deficiency in rats with respect to tissue oxidative damage and defense mechanisms. Rats were fed diets containing adequate (+Zn) or low concentrations (-Zn) of Zn. Both fructose- and glucose-based diets were tested. Pair-fed controls were also studied to evaluate changes in the oxidative defense system which are secondary to Zn-deficiency-induced anorexia. Plasma and liver Zn concentrations and CuZn superoxide dismutase activities were lower in the -Zn rats than in the +Zn rats. Liver glutathione (GSH) and disulfide glutathione concentrations were higher in the -Zn rats than in the +Zn rats; this difference was most pronounced in the fructose groups. Liver and heart selenium glutathione peroxidase (Se-GSH-Px) activities were lower in the -Zn-fructose group than in the +Zn-fructose group. Liver Se-GSH-Px activity was higher in the fructose groups than in the glucose groups. Liver GSH reductase (GSH-Red) activity was lower in the -Zn-fructose group than in its control group. Liver glutamine synthetase activity was lower in the -Zn-glucose group and in the fructose groups than in the glucose control group. Liver thiobarbituric acid reactive substance (TBARS) production was similar among the groups. Collectively, these results support the concept that Zn deficiency can result in an impaired oxidant defense system. Based on the observation that pair-fed control animals also showed evidence of oxidative damage, we suggest that one factor that contributes to the effect of Zn deficiency is the reduction in caloric intake that occurs in these animals. Fructose feeding resulted in increased activities of several of the oxidant defense enzymes. Protein oxidative damage assessed by glutamine synthetase activity was increased by both Zn deficiency and fructose feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Halliwell, Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans,Free Radical Res. 25, 57–74 (1996).

    CAS  Google Scholar 

  2. C. L. Keen and S. Zidenberg-Cherr, Trace element and vitamin interactions in free radical defense, inNutrition in a Sustainable Environment, Proceedings of the XV Inter- national Congress of Nutrition, M. Wahlquist, A. S. Truswell, R. Smith, and P. J. Nestle, eds., Smith-Gordon, London, pp. 709–803 (1994).

    Google Scholar 

  3. T. M. Bray and W. J. Bettger, The physiological role of zinc as an antioxidant,Free Radical Biol. Med. 8, 281–291 (1990).

    Article  CAS  Google Scholar 

  4. P. I. Oteiza, K. L. Olin, C. G. Fraga, and C. L. Keen, Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes,J. Nutr. 125, 823–829 (1995).

    PubMed  CAS  Google Scholar 

  5. P. I. Oteiza, K. L. Olin, C. G. Fraga, and C. L. Keen, Oxidant defense systems in testes from zinc-deficient rats,Proceedings of the Society for Experimental Biology and Medicine 213, 85–91 (1996).

    PubMed  CAS  Google Scholar 

  6. R. A. DiSilvestro and A. Blostein-Fujii, Moderate zinc deficiency in rats enhances lipoprotein oxidation in vitro,Free Radical Biol. Med. 22, 739–742 (1997).

    Article  CAS  Google Scholar 

  7. P. Faure, E. Rossini, J. L. Lafond, M. J. Richard, and A. Favier, Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets,J. Nutr. 127, 103–107 (1997).

    PubMed  CAS  Google Scholar 

  8. S. R. Blakely, J. Hallfrisch, S. Reiser, and E. S. Prather, Long-term effects of moderate fructose feeding on glucose tolerance parameters in rats,J. Nutr. 111, 307–314 (1981).

    PubMed  CAS  Google Scholar 

  9. J. Sleder, Y. D. I. Chen, M. D. Cully, and G. M. Reaven, Hyperinsulinemia in fructose- induced hypertriglyceridemia in the rat,Metabolism 29, 303–305 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. A. W. Thorburn, L. H. Storlien, A. B. Jenkins, S. Khouri, and E. W. Kraegen, Fructoseinduced in vivo insulin resistance and elevated plasma triglyceride levels in rats,Am. J. Clin. Nutr. 49, 1155–1163 (1989).

    PubMed  CAS  Google Scholar 

  11. I. Zavaroni, S. Sander, S. Scott, and G. M. Reaven, Effect of fructose feeding on insulin secretion and insulin action in the rat,Metabolism 29, 970–973 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. M. Fields, R. J. Ferretti, J. C. Smith, and S. Reiser, Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues,Biol. Trace Element Res. 6, 379–391 (1984).

    CAS  Google Scholar 

  13. M. Fields, R. J. Ferretti, J. C. Smith, and S. Reiser, The interaction of type of dietary carbohydrates with copper deficiency,Am. J. Clin. Nutr. 39, 289–295 (1984).

    PubMed  CAS  Google Scholar 

  14. M. S. Clegg, C. L. Keen, B. Lonnerdal, and L. S. Hurley, Influence of ashing techniques on the analysis of trace elements in animal tissue, 1. Wet ashing,Biol. Trace Element Res. 3, 107–115 (1981).

    Article  CAS  Google Scholar 

  15. S. Marklund and G. Marklund, Involvement of the Superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase,Eur. J. Biochem. 47, 469–474 (1974).

    Article  PubMed  CAS  Google Scholar 

  16. R. A. Lawrence and R. F. Burk, Glutathione peroxidase activity in selenium-deficient rat liver,Biochem. Biophys. Res. Commun. 71, 952–958 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. K. M. Rogers and R. C. Augusteyn, Glutathione reductase in normal and cataractous human lenses,Exp. Eye Res. 27, 719–721 (1978).

    Article  PubMed  CAS  Google Scholar 

  18. J. R. Prohaska, Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and Superoxide dismutase subsequent to dietary or genetic copper deficiency in mice,J. Nutr. 113, 2048–2058 (1983).

    PubMed  CAS  Google Scholar 

  19. K. G. D. Allen and J. R. Arthur, Inhibition by 5-sulphosalicylic acid of the glutathione reductase recycling assay for glutathione analysis,Clin. Chim. Acta 162, 237–239 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. R. E. Miller, R. Hackenberg, and H. Gershman, Regulation of glutamine synthetase in cultured 3T3-L1 cells by insulin, hydrocortisone, and dibutyryl cyclic AMP,Proc. Natl. Acad. Sci. USA 75, 1418–1422 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. C. G. Fraga, B. E. Leibovitz, and A. L. Tappel, Lipid peroxidation measured as thio- barbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes,Free Radical Biol. Med. 4, 155–161 (1988).

    Article  CAS  Google Scholar 

  22. M. Sagai, K. Arakawa, T. Ichinose, and N. Shimoj, Biochemical effects on combined gases of nitrogen dioxide and ozone, I. Species differences of lipid peroxides and phospholipids in lungs,Toxicology 46, 251–265 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. L. A. Witting and M. K. Horwitt, Effect of degree of fatty acid unsaturation in to- copherol deficiency-induced creatinuria,J. Nutr. 82, 19–33 (1964).

    PubMed  CAS  Google Scholar 

  24. C. Coudray, M. J. Richard, F. Laporte, P. Faure, A. M. Roussel, and A. Favier, Superoxide dismutase activity and zinc status: a study in animal and man,J. Nutr. Med. 3, 13–26 (1992).

    Article  Google Scholar 

  25. K. L. Olin, M. S. Golub, M. E. Gershwin, A. G. Hendrickx, and B. Lonnerdal, Extracellular Superoxide dismutase activity is affected by dietary zinc intake in nonhuman primate and rodent models,Am. J. Clin. Nutr. 61, 1263–1267 (1995).

    PubMed  CAS  Google Scholar 

  26. W. J. Bettger and T. M. Bray, Effect of dietary zinc or copper deficiency on catalase, glutathione peroxidase, and superoxide dismutase activities in rat heart,Nutr. Res. 9, 319–326 (1989).

    Article  CAS  Google Scholar 

  27. C. G. Taylor, W. J. Bettger, and T. M. Bray, Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats,J. Nutr. 118, 613–621 (1988).

    PubMed  CAS  Google Scholar 

  28. S. Zidenberg-Cherr and C. L. Keen, Essential trace elements in antioxidant processes, inTrace Elements, Micronutrients and Free Radicals, I. E. Dreosti, ed., Humana, Totowa, NJ, pp. 107–127 (1991).

    Google Scholar 

  29. S. Zidenberg-Cherr, D. Dreith, and C. L. Keen, Copper status and adriamycin treat- ment: effects on antioxidant status in mice,Toxicol. Lett. 48, 201–212 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. M. Fields, C. G. Lewis, M. D. Lure, W. A. Burns, and W. E. Antholine, Low dietary iron prevents free radical formation and heart pathology of copper-deficient rats fed fructose,Proceedings of the Society for Experimental Biology and Medicine 202, 225–232 (1993).

    PubMed  CAS  Google Scholar 

  31. I. Bureau, C. G. Lewis, and M. Fields, Effect of hepatic iron on hypercholesterolemia and hypertriacylglycerolemia in copper-deficient fructose-fed rats,Nutrition 14, 366–371 (1998).

    Article  PubMed  CAS  Google Scholar 

  32. J. M. Carney, P. E. Starke-Reed, C. N. Oliver, R. W. Landum, M. S. Cheng, J. F. Wu, et al., Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone,Proc. Natl. Acad. Sci. USA 88, 3633–3636 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. P. Faure, A. M. Roussel, M. J. Richard, T. Foulon, P. Groslambert, A. Hadjian, et al., Effect of an acute zinc depletion on rat lipoprotein distribution and peroxidation,Biol. Trace Element Res. 28, 135–146 (1991).

    CAS  Google Scholar 

  34. I. E. Dreosti and E. J. Partick, Zinc, ethanol and lipid peroxidation in adult and fetal rats,Biol. Trace Element Res. 14, 179–191 (1987).

    CAS  Google Scholar 

  35. S. Zidenberg-Cherr, K. L. Olin, J. Villanueva, A. Tang, S. D. Phinney, C. H. Halsted, et al., Ethanol-induced changes in hepatic free radical defense mechanisms and fattyacid composition in the miniature pig,Hepatology 13, 1185–1192 (1991).

    PubMed  CAS  Google Scholar 

  36. J. Hallfrisch, F. Lazar, C. Jorgensen, and S. Reiser, Insulin and glucose responses in rats fed sucrose or starch,Am. J. Clin. Nutr. 32, 787–793 (1979).

    PubMed  CAS  Google Scholar 

  37. J. Hallfrisch, L. Cohen, and S. Reiser, Effects of feeding rats sucrose in a high fat diet,J. Nutr. 111, 531–536 (1981).

    PubMed  CAS  Google Scholar 

  38. S. Reiser and J. Hallfrisch, Insulin sensitivity and adipose tissue weight of rats fed starch or sucrose diet ad libitum or in meals,J. Nutr. 107, 147–155 (1977).

    PubMed  CAS  Google Scholar 

  39. G. Van den Berge, Fructose: metabolism and short-term effects on carbohydrate and purine metabolic pathway,Prog. Biochem. Pharmacol. 21, 1–32 (1986).

    Google Scholar 

  40. J. V. Hunt, R. T. Dean, and S. P. Wolff, Hydroxyl radical production and autoxidative glycosylation,Biochem. J. 256, 205–212 (1988).

    PubMed  CAS  Google Scholar 

  41. J. V. Hunt and S. P. Wolff, Oxidative glycation and free radical production: a causal mechanism of diabetic complications,Free Radical Res. Commun. 12–13, 115–123 (1991).

    Google Scholar 

  42. S. P. Wolff, Z. Y. Jiang, and J. V. Hunt, Protein glycation and oxidative stress in dia- betes mellitus and aging,Free Radical Biol. Med. 10, 339–352 (1991).

    Article  CAS  Google Scholar 

  43. J. C. Smith, M. L. Failla, M. Fields, and A. Rose, Lack of an effect of dietary fructose on severity of zinc deficiency in rats,J. Nutr. 117, 1443–1446 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Keen, C.L. Influence of dietary carbohydrate on zinc-deficiency-induced changes in oxidative defense mechanisms and tissue oxidative damage in rats. Biol Trace Elem Res 70, 81–96 (1999). https://doi.org/10.1007/BF02783851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783851

Index Entries

Navigation