Skip to main content
Log in

Copper deficient rat heart can compensate for doxorubicin-induced oxidant stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The hypothesis that copper (Cu) alters drug metabolizing enzymes and functions as an antioxidant nutrient in doxorubicin cardiotoxicity was tested. Male Sprague-Dawley rats were fed Cu adequate (+Cu; 5 mg Cu/kg of diet), marginally Cu deficient (MCu; 1.2 mg Cu/kg of diet), or severely Cu deficient (Cu; 0.5 mg Cu/kg of diet) diets for 6 wk. Doxorubicin (1, 2, or 4 mg/kg body wt) or saline were administered intraperitoneally 1 time/wk for 4 wk. Compared to control hearts, Cu, Zn superoxide dismutase activity was decreased by 9% in MCu rats and by 21–40% inCu rats. Glutathione peroxidase activity was elevated 5–15% inCu rats. Doxorubicin administration increased heart Cu, Zn superoxide dismutase activity in+Cu andCu rats 18 h after the last of 4 injections, but not 18 h after 1 injection. There was no synergism between doxorubicin and Cu deficiency on lipid peroxidation, plasma creatine phosphokinase, cardiac hypertrophy, electrocardiographic abnormalities, or morphological changes. Heart glutathione S-transferase activity was decreased by Cu deficiency, and like Cu, Zn superoxide dismutase activity, returned to normal inCu rats given doxorubicin. Thus, the Cu deficient rat heart may be able to compensate for doxorubicin-induced oxidant stress by increasing the activity of Cu,Zn superoxide dismutase and glutathione S-transferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Saari and D. M. Medeiros.Biol. Trace Elem. Res. 31, 249 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. P. K. Singal, C. M. R. Deally, and L. E. Weinberg.J. Mol. Cell. Cardiol. 19, 817 (1987).

    Article  PubMed  CAS  Google Scholar 

  3. J. Fischer, M. A. Johnson, and R. L. Tackett.Toxicol. Lett. 57, 147 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. J. G. Fischer, R. L. Tackett, E. W. Howerth, and M. A. Johnson.J. Nutr.,122, 2128 (1992).

    PubMed  CAS  Google Scholar 

  5. J. D. Hammermueller, T. M. Bray, and W. J. Bettger.J. Nutr. 117, 894 (1987).

    PubMed  CAS  Google Scholar 

  6. G. Powis.Metabolism and Action of Anti-Cancer Drugs, G. Powis and R. A. Prough, eds., Taylor and Francis, London, 1987, pp. 211–260.

    Google Scholar 

  7. M. A. Johnson and C. L. Murphy.Am. J. Clin. Nutr. 7, 96 (1988).

    Google Scholar 

  8. J. A. Buege and S. D. Aust.Methods in Enzymology 52, 302 (1978).

    PubMed  CAS  Google Scholar 

  9. D. I. Paynter.Biol. Trace Element Res. 2, 121 (1980).

    Article  CAS  Google Scholar 

  10. D. E. Paglia and W. W. Valentine.J. Lab. Clin. Med. 70, 158 (1979).

    Google Scholar 

  11. K. H. Schosinsky, H. P. Lehmann, and M. F. Beeler,Clin. Chem. 20, 1556 (1974).

    PubMed  CAS  Google Scholar 

  12. M. A. Johnson and C. L. Murphy.Biol. Trace Elem. Res. 17, 69 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. H. Aebi,Methods of Enzymaic Analysis, vol. 3, H. U. Bergmeyer, ed., Verlag Chemie, Weinhein, 1983, pp. 273–285.

    Google Scholar 

  14. W. H. Habig, M. J. Pabst, and W. B. Jakoby.J. Biol. Chem. 193, 265 (1974).

    Google Scholar 

  15. D. M. Williams, R. F. Burk, S. G. Jenkinson, and R. A. Lawrence.J. Nutr. 111, 979 (1981).

    PubMed  CAS  Google Scholar 

  16. T. Omura and R. Sato.J. Biol. Chem. 239, 2379 (1964).

    PubMed  CAS  Google Scholar 

  17. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall.J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  18. K. Asaoka and K. Takahashi.J. Biochem. 90, 1237 (1981).

    PubMed  CAS  Google Scholar 

  19. M. A. Johnson.J. Nutr. 116, 802 (1986).

    PubMed  CAS  Google Scholar 

  20. SAS Institute Inc. (1985),SAS User's Guide: Statistics, Version 5 Edition, SAS Institute Inc., Cary, NC, 1985, pp. 1–956.

    Google Scholar 

  21. J. Davidson, D. M. Medeiros, and R. L. Hamlin.J. Nutr. 122, 1566 (1992).

    PubMed  CAS  Google Scholar 

  22. D. M. Medeiros, D. Bagby, G. Ovecka, and R. McCormick.J. Nutr. 121, 815 (1991).

    PubMed  CAS  Google Scholar 

  23. D. M. Medeiros, Z. Liao, and R. L. Hamlin.J. Nutr. 121, 1026 (1991).

    PubMed  CAS  Google Scholar 

  24. R. D. Olson and P. S. Mushlin.FASEB J. 4, 3076 (1990).

    PubMed  CAS  Google Scholar 

  25. M. A. Johnson, J. G. Fischer, and S. E. Keys.Crit. Rev. Food Sci. Nutr. 32, 1 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. J. H. Doroshow, G. Y. Locker, and C. E. Myers.J. Clin. Invest. 65, 128 (1980).

    PubMed  CAS  Google Scholar 

  27. R. D. Olson, J. S. MacDonald, C. J. van Boxtel, R. C. Boerth, R. D. Harbison, A. E. Slonim, R. W. Freeman, and J. A. Oates.J. Pharmacol. Exp. Ther. 215, 450 (1980).

    PubMed  CAS  Google Scholar 

  28. W. D. Wosilait and M. P. Ryan.Res. Comm. Chem. Path. Pharm. 56, 335 (1987).

    CAS  Google Scholar 

  29. C. E. Myers, L. Gianni, C. B. Simone, R. Klecker, and R. Greene.Biochemistry 21, 1713 (1982).

    Article  Google Scholar 

  30. W. T. Johnson and T. R. Kramer.J. Nutr. 117, 1085 (1987).

    PubMed  CAS  Google Scholar 

  31. S. K. Jain and D. M. Williams.Am. J. Clin. Nutr. 48, 637 (1988).

    PubMed  CAS  Google Scholar 

  32. B. C. Lee. University Microfilms International, Ann Arbor, MI. (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, J.G., Tackett, R.L., Howerth, E.W. et al. Copper deficient rat heart can compensate for doxorubicin-induced oxidant stress. Biol Trace Elem Res 37, 233–251 (1993). https://doi.org/10.1007/BF02783798

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783798

Index Entries

Navigation