Skip to main content
Log in

Direct production of photons and dileptons in thermodynamical models of multiple hadron production

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The thermodynamical picture of a hot lump of hadronic matter («clusters», high-density gluonic clouds and especially suitable cases of hydrodynamical theories of Heisenberg and Landau) naturally leads to direct production of gamma quanta («black-body radiation») and—in the next order ine 2—of lepton pairs. At largep T their spectra reproduce the main features of the pionic spectrum. The intensity of γ’s exceedse 2 times that of the π’s, due to the relatively large volume of the radiating system and to the long duration of its expansions. However, since the dynamics of the heated hadronic vacuum is not known, pre-exponential factors cannot be safely calculated. All this is expected to hold for the overall c.m.s. energy\(\sqrt 8 \sim \left( {10 \div 10^2 } \right)\) GeV. For even higher energies with a correspondingly increasing mass of the lump (if such lumps exist), probably at\(\sqrt 8 > 10^3 \) GeV, γ quanta (and for even larger lumps,\(\sqrt 8 \sim 10^4 \) GeV, leptons as well) may become equal partners to hadrons in thermodynamical equilibrium. Almost all the results were published by the present author about 15 years ago in Russian (and only briefly mentioned in some of his review papers in English). In this paper they are somewhat extended and discussed in more detail in the light of new experiments on large-p T leptons and of the quark-gluon ideas.

Riassunto

Il quadro termodinamico di un blocco caldo di materia adronica («ammassi», nubi gluoniche di alta densità e specialmente casi adatti di teorie idrodinamiche di Heisenberg e Landau) conduce in modo naturale alla produzione diretta dei quanti gamma («radiazione del corpo nero») e—nell’ordine successivo ine 2—di coppie di leptoni. Per grandep T i loro spettri riproducono le caratteristiche principali dello spettro pionico. L’intensità dei γ superae 2 volte quella dei π, a causa del volume relativamente grande del sistema radiante e della lunga durata del suo sviluppo. Comunque, poiché non si conosce la dinamica del vuoto adronico riscaldato, i fattori preesponenziali non possono essere calcolati in modo sicuro. Ci si aspetta che tutto questo valga per l’energia totale s.c.m.\(\sqrt 8 \sim \left( {10 \div 10^2 } \right)\) GeV. Per energie ancora maggiori con massa del blocco crescente corrispondentemente (se questi blocchi esistono), probabilmente a\(\sqrt 8 > 10^3 \){ GeV, i quanti γ (e per blocchi ancora maggiori,\(\sqrt 8 \sim 10^4 \) GeV, anche i leptoni) possono partecipare come gli adroni all’equilibrio termodinamico. Quasi tutti i risultati furono pubblicati da questo autore una quindicina di anni fa in russo (e menzionati solo brevemente in alcuni dei suoi lavori di rassegna in inglese). In questo lavoro questi risultati sono in qualche modo estesi e discussi più dettagliatamente alla luce di nuovi esperimenti sui leptoni con grandep T e delle idee sul quark-gluone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Feinberg: a)XV International Conference on High-Energy Physics (Kiev, 1970); b)Sov. Phys. Usp.,14, 455 (1972).

  2. E. V. Shuryak:Phys. Lett.,42 B, 357 (1972).

    Article  ADS  Google Scholar 

  3. P. Carruthers andD. V. Minh:Phys. Lett.,41 B, 597 (1972);44 B, 507 (1973);Phys. Rev. D,8, 859 (1973).

    Article  ADS  Google Scholar 

  4. F. Cooper andD. Schonberg:Phys. Rev. D,8, 334 (1973);Phys. Rev. Lett.,30, 880 (1973);F. Cooper andG. Frye:Phys. Rev. D,10, 186 (1974);F. Cooper, G. Frye andD. Schonberg:Phys. Rev. D,11, 192 (1975).

    Article  ADS  Google Scholar 

  5. E. V. Shuryak: Novosibirsk preprint (1975), to be published.

  6. O. V. Zhirov andE. V. Shuryak:Jad. Fiz.,21, 861 (1975).

    Google Scholar 

  7. E. Suhonen, J. Enkenberg, K. E. Lassila andS. Sohlo:Phys. Rev. Lett.,31 1567 (1973);S. Sohlo andG. Wilk:Lett. Nuovo Cimento,13, 375 (1975).

    Article  ADS  Google Scholar 

  8. F. Cooper andD. H. Sharp:Phys. Rev. D,12, 1123 (1975).

    Article  ADS  Google Scholar 

  9. C. B. Chiu, E. C. G. Sudarshan andK.-H. Wang:Phys. Rev. D,12, 902 (1975).

    Article  ADS  Google Scholar 

  10. R. C. Hwa:Phys. Rev. D,10, 2260 (1974).

    Article  ADS  Google Scholar 

  11. E. V. Shuryak:Soc. Journ. Nucl. Phys.,16, 220 (1973).

    Google Scholar 

  12. V. Canuto, J. Lodenquai andP. Olesen:The improved energy-momentum tensor for a scalar field and hydrodynamical dissipation, Nordita preprint (1975).

  13. T. F. Hoang:Viscosity effect in Landau’s hydrodynamical model, ANL-HEP-75-12 preprint;M. Chaichian andE. Suhonen: to appear.

  14. E. V. Shuryak:Phys. Lett.,34 B, 509 (1971);M. Chaichian andE. Suhonen: Bielefeld University Report Bi-74/04 (January 1974).

    Article  ADS  Google Scholar 

  15. F. Cooper, G. Frye andD. Schonberg:Phys. Rev. Lett.,32, 862 (1974).

    Article  ADS  Google Scholar 

  16. P. D. Morley:Nucl. Phys.,85 B, 471 (1975).

    Article  ADS  Google Scholar 

  17. E. L. Feinberg:Phys. Lett.,52 B, 203 (1974).

    Article  ADS  Google Scholar 

  18. W. S. Lam andE. Suhonen:Phys. Lett.,50 B, 453 (1974).

    Article  ADS  Google Scholar 

  19. J. Baacke:Phys. Lett.,49 B, 297 (1974).

    Article  ADS  Google Scholar 

  20. E. L. Feinberg:Phys. Rep.,5 C, 237 (1972); b)Proceedings of the II International Conference on Particle Physics (Aix-en-Provence, September 1973, invited talk); c)Proceedings of the V International Symposium on Many-Particle Hadrodynamics (Leipzig, June 1974).

    Article  ADS  Google Scholar 

  21. J. L. Rozenthal:Usp. Fiz. Nauk,116, 271 (1975).

    Article  ADS  Google Scholar 

  22. D. A. Kirzhnitz andA. Linde:Phys. Lett.,42 B, 971 (1972),

    Google Scholar 

  23. D. Sivers, S. J. Brodsky andR. Blankenbeckler:Phys. Rep.,23 C, 2 (1976).

    ADS  Google Scholar 

  24. J. D. Bjorken andH. Weisberg:Direct lepton production and the Drell-Yan mechanism, SLAC-PUB-1631 (August 1975), to appear inPhys. Rev.

  25. E. L. Feinberg: rapporteur talk:International Conference on High-Energy Physics (Kiev, 1959); abbreviated version:Usp. Fiz. Nauk,70, 333 (1960).

  26. S. Pokorski andL. Van Hove:Acta Phys. Polon., B5, 229 (1974);Nucl. Phys.,86 B, 243 (1975).

    Google Scholar 

  27. Brazilian-Japanese Collaboration:Progr. Theor. Phys. Suppl. 47, 5 (1971);XII International Conference on High-Energy Physics (London, 1974).

    Google Scholar 

  28. K. I. Alekseeva et al.:International Conference on Cosmic Rays, vol.3 (Kyoto, 1962), p. 409.

    Google Scholar 

  29. A. V. Apanasenko et al.:International Conference on Cosmic Rays, Vol.4 (Hobart, 1971), p. 1280.

    ADS  Google Scholar 

  30. K. V. Cherdinceva, I. V. Rakobolskaya andS. I. Nikolsky:Yad. Fiz.,9, 152 (1969);Short Communications on Physics, P. N. Lebedev Physics Institute No. 11 (1971).

    Google Scholar 

  31. K. Gotteried:Phys. Rev. Lett.,32, 957 (1974);Proceedings of the II International Conference on Particle Physics (Aix-en-Provence, September 1973).

    Article  ADS  Google Scholar 

  32. A. I. Demianov, V. S. Murzin andL. I. Sarycheva:Proceedings of the International Conference on Cosmic Rays, vol.4 (Munich, 1975), paper HE 6-8 (1976).

  33. E. L. Feinberg:Sov. Phys. JETP,23, 132 (1966);Problemy Teoreticheskoy Fiziki (I. Tamm memorial volume) (Moskva, 1972), p. 248;Interaction cross-section of diffractionally produced hadrons in «statu nascendi», P. N. Lebedev Physics Institute Preprint No. 166 (1972).

    ADS  Google Scholar 

  34. I. N. Sissakyan, E. L. Feinberg andD. S. Chernavsky:Sov. Phys. JETP,25, 356 (1967).

    ADS  Google Scholar 

  35. E. V. Shuryak:Final state interaction and composition of secondries, Novosibirsk Institute of Nuclear Physics, Preprint 112-73 (1973).

  36. J. J. Dumont andL. Heiko: University of Brussels Preprint IIHE-74.1 (January 1974).

  37. M. I. Gorenstein, V. P. Shelest andG. M. Zinoviev:Phys. Lett.,60 B, 283 (1976).

    Article  ADS  Google Scholar 

  38. British-Scandinavian Collaboration:Phys. Lett.,44 B, 527 (1973).

    Google Scholar 

  39. Meng Ta-Chung:Phys. Rev. D,9, 3062 (1974).

    Article  ADS  Google Scholar 

  40. E. L. Feinberg:Izv. Akad. Nauk SSSR, Seria Fiz.,26, 622 (1962).

    Google Scholar 

  41. G. A. Milekhin:Proceedings of International Conference on Cosmic Rays, Moscow 1959, vol.1 (Moscow, 1960), p. 220.

    ADS  Google Scholar 

  42. Yu. S. Vernov andI. N. Sissakyan:Izv. Akad. Nauk SSSR, Seria Fiz. 26, 642 (1962).

    Google Scholar 

  43. A. A. Rukhadze andV. P. Silin:Elektromagnitnye svoistva plasmy i plasmopodobnykh sred (Moskva, 1961).

  44. E. S. Fradkin:Quantum field theory and hydrodynamics, inProceedings P. N. Lebedev Physics Institute, vol.29, translated and published by Consulant Bureau (New York, N.Y., 1967).

  45. A. I. Nikishov:Žurn. Ėks. Teor. Fis.,36, 1323 (1959).

    Google Scholar 

  46. S. I. Nikolsky et al.:International Cosmic-Rays Conference, vol.6 (Hobart, 1971), p. 2259.

    Google Scholar 

  47. E. L. Feinberg:Izv. Akad. Nauk SSSR, Seria Fiz. 34, 1987 (1970).

    Google Scholar 

  48. L. M. Lederman:Lepton production in hadron collisions, inPhys. Rep. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinberg, E.L. Direct production of photons and dileptons in thermodynamical models of multiple hadron production. Nuov Cim A 34, 391–412 (1976). https://doi.org/10.1007/BF02783618

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783618

Navigation