Abstract
Production of 2-ketogluconic acid in batch fermentation was investigated.Acetobacter pasteurianus ATCC 6438, which produces selectively 2-ketogluconic acid only, was used. The optimal pH for glucose dehydrogenation to gluconate by resting cells was 5.0 and for gluconate dehydrogenation to 2-ketogluconate 4.25. When glucose medium was used, the 89% yield was achieved after 90 h. For the optimal productivity, medium containing glucose and gluconate with the molar glucose:gluconate ratio 7.4 was proposed, and the yield of 92% after 56 h was achieved. This composition of medium led to the elevation of dissolved oxygen concentration during fermentation. It consequently resulted in elevated gluconate dehydrogenase activity being discussed as the rate-limiting activity of the batch production.
Similar content being viewed by others
References
Kulh’anek, M. (1989),Adv. Appl. Microbiol. 34, 141–182.
Ameyama, M., Shinagawa, E., Matsushita, K., and Adachi, O. (1981),Agric. Biol. Chem. 45, 851–861.
Levering, P. R., Weenk, G., Olijve, W., Dijkhuizen, L., and Harder, W. (1988),Arch. Microbiol. 149, 534–539.
Pronk, J. T., Levering, P. R., Olijve, W., and Van Dijken, J. P. (1989),Enzyme. Microb. Technol. 11, 160–164.
Shinagawa, E., Matsushita, K., Adachi, O., and Ameyama, M., (1984),Agr. Biol. Chem. 48, 1517–1522.
Qazi, G. N., Parshad, R., Verma, V., Chopra, C. L., Buse, R., Träger, M., and Onken, U. (1991),Enzyme. Microb. Technol. 13, 504–507.
Weenk, G., Olijve, W., and Harder, W. (1984),Appl. Microbiol. Technol. 20, 400–405.
Shinagawa, E., Matsushita, K., Adachi, O., and Ameyama, M. (1983),J. Ferment. Technol. 61, 359–363.
Levering, P. R., Lucas, C., Van Heijst, J. and Olijve, W. (1987), inProc. 4th Eur. Congr. Biotechnol. 3, 477.
Attwood, M. A., Van Dijken, J. P., and Pronk, J. T. (1991),J. Ferment. Bioeng. 72, 101–105.
Stroshane, R. M. and Perlman, D. (1977),Biotechnol. Bioeng. 19, 459–465.
Stadler-Szoke, A., Nyeste, L., and Hollo, J. (1980),Acta. Aliment. 9, 155–172.
Schnelkunova, S. A. and Voinova, G. N. (1969),Mikrobiologiya 38, 583–588.
Stubbs, J. J., Locwood, L. B., and Roe, E. T. (1940),Ind. Eng. Chem. 40, 1626–1631.
Sonoyama, T., Tani, H., Matsuda, K., Kageyama, B., Tanimoto, M., Kobayashi, K., Yagi, S., Kyotani, H., and Mitsushima, K. (1982),Appl. Environ. Microbiol. 43, 1064–1069.
Buse, R., Qazi, G. N., Träger, M., and Onken, U. (1990),Biotechnol. Lett. 12, 111–116.
Buse, R., Qazi, G. N., and Onken, U. (1992),J. Biotechnol. 26, 231–244.
Sharma, N., Parshad, R., and Qazi, G. N. (1992),Biotechnol. Lett. 14, 391–396.
Oosterhuis, N. M. G., Groesbeek, N. M., Kossen, N. W. F., and Schenk, E.S. (1985),Appl. Microbiol. Biotechnol. 21, 42–49.
Matsushita, K., Ohno, Y., Shinagawa, E., Adachi, O., and Ameyama, M. (1980),Agric. Biol. Chem. 44, 1505–1512.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Švitel, J., Šturdik, E. 2-Ketogluconic acid production by acetobacter pasteurianus. Appl Biochem Biotechnol 53, 53–63 (1995). https://doi.org/10.1007/BF02783481
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02783481