Skip to main content
Log in

Effects of dietary manganese on arterial glycosaminoglycan metabolism in sprague—dawley rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objectives of this study were to determine whether dietary manganese deficiency alters total glycosaminoglycan (GAG) concentration and composition and glycosyltransferase activity in rat aortas. Sprague-Dawley rats were fed either a manganese-deficient or a manganese-sufficient diet. Arterial GAGs were isolated and quantified by measuring uronic acid content. The individual GAGs were separated and quantified with cellulose acetate electrophoresis. The activity of the enzyme galactosyltransferase I was measured using a 100,000g particulate fraction and 4-methylumbelliferylxyloside (Xyl-MU) as an acceptor. There was a significant decrease (p <- 0.05) in uronic acid content in the manganese-deficient (1.18 ± 0.08 mg/g) rat aortas as compared with the manganese-sufficient (1.59 ± 0.10 mg/g) ones. Chondroitin sulfate and heparan sulfate concentrations were decreased by 38% (p < 0.01) and 36% (p < 0.05), respectively, in the manganese-deficient rat aortas. The incorporation of UDP-galactose to acceptors by the manganese-deficient rat aorta preparations was increased by 28% as compared to the manganese-sufficient preparations. These results indicate that manganese is involved in arterial GAG metabolism by affecting the enzyme galactosyltransferase and that changes in GAG concentration and composition with manganese deficiency may ultimately affect arterial wall integrity and subsequently cardiovascular health. This is the first work to demonstrate that manganese nutrition is important in arterial GAG metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Leach, Role of manganese in mucopolysaccharide metabolism,Federation Proc. 30, 991–994 (1971).

    CAS  Google Scholar 

  2. R. M. Leach, Mn (II) and glycosyltransferase essential for skeletal development, in:Manganese in Metabolism and Enzyme Function, B. L. Schrammm and F. W. Welder, eds., Acad. Press, Inc. New York, NY, pp. 81–91 (1986).

    Google Scholar 

  3. L. S. Hurley, Nutritional aspects of manganese,Trace Elem. Anal. Chem. Med. Biol. 3, 239–251 (1984).

    Google Scholar 

  4. R. M. Leach and A. M. Muenster, Studies on the role of manganese in bone formation. I. Effect upon the mucopolysaccharide content of chick bone,J. Nutr. 78, 51–54 (1962).

    PubMed  CAS  Google Scholar 

  5. R. M. Leach, A. M. Muenster, and E. M. Wien, Studies on the role of manganese in bone formation. II. Effect upon chondroitin sulfate synthesis in chick epiphyseal cartilage,Arch. Biochem. Biophy. 133, 22–28 (1969).

    Article  CAS  Google Scholar 

  6. M. L. McNatt, F. M. Fiser, M. J. Elders, B. S. Kilgore, W. G. Smith, and E. R. Hughes, Uridine diphosphate xylosyltransferase activity in cartilage from manganese-deficient chicks,Biochem. J. 160, 211–216 (1976).

    PubMed  CAS  Google Scholar 

  7. A. Tsopanakis and D. G. Herries, Bovine galactosyl transferase,Eur. J. Biochem. 83, 179–188 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. M. R. Shetlar and C. L. Shetlar, The role of manganese in wound healing, in:Manganese Health and Disease, D. J. Klimis-Tavantzis, ed., CRC Press, Boca Raton, FA, pp. 146–157 (1994).

    Google Scholar 

  9. R. Ekanayake and D. J. Klimis-Tavantzis, Ultrastructural evidence for adverse effects on aorta and liver in rats fed a short term manganese-deficient diet,FASEB J. 9, A535 (1995). (abstract)

    Google Scholar 

  10. L. Roden, Structure and metabolism of connective tissue proteoglycan, in:The Biochemistry of Glycoproteins and Proteoglycans, W. J. Lennarz, ed., Plenum Press, New York, NY, pp. 273–321 (1980).

    Google Scholar 

  11. S. R. Srinivasan, B. Radhakrishnamurthy, P. D. Vijayagopal, G. S. Berenson, and E. R. J. Dalferes, Proteoglycans, lipoproteins, and atherosclerosis, in:Hypercholesterolemia, Hypocholesterolemia, Hypertriglyceridemia, C. L. Malmedier, ed., Plenum Press, New York, NY, pp. 373–381 (1990).

    Google Scholar 

  12. E. Rouslahti, Structure and biology of proteoglycans,Ann. Rev. Cell Biol. 4, 229–255 (1988).

    Google Scholar 

  13. T. N. Wight, Cell biology of arterial proteoglycan.Arteriosclerosis 9, 1–20 (1989).

    PubMed  CAS  Google Scholar 

  14. B. Radhakrishnamurthy, S. R. Srinivasan, and G. S. Berenson, Glycosaminoglycans in atherosclerosis, in:The Glycoconjugates, Vol 4, M. I. Horowitz, ed., Academic Press, New York, NY, pp. 265–295 (1982).

    Google Scholar 

  15. R. W. Robinson, I. N. Likar, and L. J. Likar, Glycosaminoglycans and arterial disease, in:Monographs on Atherosclerosis, vol. 5, J. E. Kirk, D. Kritchevsky, O. J. Pollak, and H. S. Simms, eds., S. Karger, Besal, Switzerland, pp. 9–134 (1975).

    Google Scholar 

  16. D. J. Klimis-Tavantzis, R. M. Leach, and P. Kris-Etherton, The effect of dietary manganese deficiency on cholesterol and lipid metabolism in the Wistar rat and in the genetically hypercholesterolemic RICO rat,J. Nutr. 113, 328–336 (1983).

    PubMed  CAS  Google Scholar 

  17. P. N. Taylor, H. H. Patterson, and D. J. Klimis-Tavantzis, Manganese deficiency alters high-density lipoprotein subclass structure in the Sprague-Dawley rat,J. Nutr. Biochem. 7, 392–396 (1996).

    Article  CAS  Google Scholar 

  18. W. D. Wagner and S. R. Nohlgren, Aortic glycosaminoglycans in genetically selected WC-2 pigeons with increased atherosclerosis susceptibility,Arteriosclerosis 1, 192–201 (1981).

    PubMed  CAS  Google Scholar 

  19. M. S. Latha, P. L. Vijaymmal, and P. A. Kurup, Changes in the glycosaminoglycans and glycoproteins in the tissues in rats exposed to cigarette smoke,Atherosclerosis 31, 49–54 (1991).

    Article  Google Scholar 

  20. W. D. Wagner and B. G. Salisbury, Aortic total glycosaminoglycan and dermatan sulfate changes in atherosclerotic Rhesus monkeys,Lab. Invest. 39, 322–328 (1978).

    PubMed  CAS  Google Scholar 

  21. L. Roden, J. R. Baker, and J. A. Cifonelli, Isolation and characterization of connective tissue polysaccharides,Methods Enzymol. 8, 73–143 (1975).

    Google Scholar 

  22. H. F. Hoff and W. D. Wagner, Plasma low density lipoprotein accumulation in aortas of hypercholesterolemic swine correlates with modifications in aortic glycosaminoglycan composition,Atherosclerosis 61, 231–236 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. N. Blumenkrantz, and G. Asboe-Hansen, New method for quantitative determination of uronic acids,Anal. Biochem. 54, 484–489 (1973).

    Article  PubMed  CAS  Google Scholar 

  24. N. Seno, K. Anno, K. Kondo, S. Nagase, and S. Saito, Improved method for electrophoretic separation and rapid quantitation of isomeric chondroitin sulfates on cellulose acetate strips,Anal. Biochem. 37, 197–202 (1970).

    Article  PubMed  CAS  Google Scholar 

  25. M. Iwama, A. Honda, Y. Ohohashi, T. Sakai, and Y. Mori, Alterations in glycosaminoglycan of the aorta of vitamin E-deficient rats,Atherosclerosis 55, 115–123 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. T. Higuchi, S. Tamma, K. Takagaki, T. Nakamura, A. Morikawa, K. Tanaka, Y. Saito, and M. Endo, A method for determination of galactosyltransferase I activity synthesizing the proteoglycan linkage region,J. Biochem. Biophys. Methods 29, 135–142 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. SAS Institute, SAS User’s Guide: Statistics, Version 5. SAS Institute Inc., Cary, NC (1985).

    Google Scholar 

  28. M. S. Bolze, R. D. Reeves, F. E. Lindbeck, S. F. Kemp, and M. J. Elders, Influence of manganese on growth somatomedin and glycosaminoglycan metabolism,J. Nutr. 54, 352–362 (1985).

    Google Scholar 

  29. F. A. Fahim, N. Y. S. Morcos, and A. Y. Esmat, Effects of dietary magnesium and/or manganese variables on the growth rate and metabolism of mice,Ann. Nutr. Metab. 34, 183–192 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. L. Kjellen and U. Lindahl, Proteoglycans: structures and interactions,Annu. Rev. Biochem. 60, 443–475 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. Y. Fugunaga, M. Sobue, N. Suzuki, H. Kushida, S. Suzuki, and S. Suzuki, Synthesis of a fluorogenic mucopolysaccharide by chondrocytes in cell culture with 4-methylumbelliferyl β-D-xyloside,Biochem. Biophys. Acta. 381, 443–447 (1975).

    Google Scholar 

  32. K. Takagaki, T. Nakamura, A. Kon, S. Tamura, and M. Endo, Characterization of β-D-xyloside-induced glycosaminoglycans and oligosaccharides in cultured human skin fibroblasts,J. Biochem. 109, 514–519 (1991).

    PubMed  CAS  Google Scholar 

  33. H. J. Guretzki, E. Schleicher, K. D. Gerbitz, and B. Olgemoller, Heparin induces endothelial extracellular matrix alterations and barrier dysfunction,Am. J. Physiol. 267, c946–954 (1994).

    PubMed  CAS  Google Scholar 

  34. R. P. Ekanayake, Ultrastructural evidence for adverse effects on aorta and liver in rats fed a short term manganese-deficient diet, Master thesis, University of Maine, Orono, Maine (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Klimis-Tavantzis, D.J. Effects of dietary manganese on arterial glycosaminoglycan metabolism in sprague—dawley rats. Biol Trace Elem Res 64, 275–288 (1998). https://doi.org/10.1007/BF02783343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783343

Index entries

Navigation