Skip to main content
Log in

Transition metals as protease inhibitors

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

An alternative approach to the development of clinically useful protease inhibitors was investigated. The approach utilized coordination chemistry of transition metal ions rather than substrate analogs to block active sites of these enzymes. In the case of serine proteases it was found that aqueous Ti(IV) is a potent inhibitor of the trypsin subclass, but not the chymotrypsin subclass. The direct binding of Ti(IV) to trypsin was made possible by the presence of a free carboxyl group at the bottom of the substrate binding pocket of the enzyme, and the five-coordinate geometry of TiO(SO4)(H2O). Although initial binding of Ti(IV) was reversible, it was followed in time by irreversible inhibition. Direct binding of octahedral or tetrahedral metal ion complexes was prevented by the inability of the enzyme active sites to promote formation of a five-coordinate transition state of the metal ion required for reaction. These studies demonstrate the ability of direct metal ion binding as a way to enhance blocking of enzyme active sites as compared with that of traditional organic inhibitors. Application of these findings was investigated by measuring the affect Ti(IV) had on growth ofEscherichia coli, Salmonella typhimurium, andPseudotnonas aeruginosa. Five-coordinate titanyl sulfate completely inhibited the growth of these organisms. This suggests that five-coordinate titanyl sulfate, which is easier and less expensive to manufacture than conventional antibiotics, may be useful in controlling endemic infections ofE. coli andS. typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Wolf,Experientia 48, 117–118 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. H. G. Krausslich, S. Oroszlan, and E. Wimmer, eds.,Viral Proteinases as Targets for Chemotherapy, Current Communications in Molecular Biology, Cold Spring Harbor, NY (1989).

    Google Scholar 

  3. D. W. Sifton, ed.,Physicians’ Desk Reference, 51st edition, Medical Economics Company, Montvale, NJ, pp. 447–451, 1670–1673, 2291–2294 (1997).

    Google Scholar 

  4. S. M. Hammer, K. Souires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. S. Currier, et al.,New England J. Medicine 337, 725–733 (1997).

    Article  CAS  Google Scholar 

  5. R. M. Gulick, J. W. Mellors, D. Havlir, J. J. Eron, C. Gonzalez, D. McMahon, et al.,New England J. Medicine 337, 734–739 (1997).

    Article  CAS  Google Scholar 

  6. P. Chen, H. Tsuge, R. J. Almassy, C. L. Gribskov, S. Katoh, D. L. Vanderpool, et al.,Cell 86, 835–843 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. R. A. Love, H. E. Parge, J. A. Wickersham, Z. Hostomsky, N. Habuka, E. W. Moomaw, T. Adachi, and A. Hostomska,Cell 87, 331–342 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. J. L. Kim, K. A. Morgenstern, C. Lin, T. Fox, M. D. Dwyer, J. A. Landro, et al.,Cell 87, 343–355 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. H. Matsubara, and J. Feder,The Enzymes, vol. 3, Boyer, P. D., ed., Academic Press, New York, NY, pp. 721–795 (1971).

    Google Scholar 

  10. C. G. Miller, inAnnual Review of Microbiology, vol. 29, M. P. Starr, J. L. Ingraham, and S. Raffel, eds., Annual Reviews, Inc., Palo Alto, CA, pp. 485–504 (1975).

    Google Scholar 

  11. B. Duffy,Turbidimetric Analysis of the Growth of Salmonella typhi in the Presence of Titanium Metal Ion, Thesis, Dominican College, San Rafael, CA (1996).

    Google Scholar 

  12. C. W. Schwietert,Biological Affects of Ti(IV), a Serine Protease Inhibitor, Thesis, Dominican College, San Rafael, CA (1997).

    Google Scholar 

  13. C. W. Schwietert,Biological Affects of Ti(IV), a Serine Protease Inhibitor, 17th Annual Meeting of the Association of North Bay Scientist, Santa Rosa, CA (1997).

  14. C. W. Schwietert,Biological Affects of Ti(IV): a Serine Protease Inhibitor, Abstract # 9, Bay Area Science Symposium, Los Altos Hills, CA (1997).

    Google Scholar 

  15. S. Bagger,J. Inorg. Biochem.,52, 165–171 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. F. Adebodun, and F. Jordan,Biochemistry,28, 7524–7531 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. V. I. Belokoskov,Zh. Neorgan. Khim.,7, 279–284 (1962).

    CAS  Google Scholar 

  18. J. Barksdale,Titanium: Its occurrence, properties and compounds. Ronald Press, New York, NX p. 87 (1966).

    Google Scholar 

  19. E. S. Hanrahan,J. Inorg. Nucl. Chem.,26, 1757–1758 (1964).

    Article  CAS  Google Scholar 

  20. J. P. McCue, and J. H. Kennedy,J. Inorg. Nucl. Chem.,39, 687–689 (1977).

    Article  CAS  Google Scholar 

  21. E. B. Sandell,Colorimetric Determination of Trace Metals, 2nd ed., Interscience Publishers, New York, NY., pp 572–576 (1950).

    Google Scholar 

  22. J. C. Ireland, P. Klostermann, F. W. Rice, and R. M. Clark,Applied and Environmental Microbiology 59, 1668–1670 (1993).

    PubMed  CAS  Google Scholar 

  23. W. Bode, and P. Schwager,FEBS Letters,56, 139–143 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. T. Vajda, and A. Garai,J. Inorg. Biochem. 15, 307–315 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. F. Abbott, J. E. Gomez, E. R. Birnbaum, and D. W. Darnall,Biochemistry 14 (22), 4935–4943 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. M. Epstein, A. Levitzki, and J. Reuben,Biochemistry 13 (8), 1777–1782 (1974).

    Article  PubMed  CAS  Google Scholar 

  27. E. Zeffren, and P. L. Hall,The Study of Enzyme Mechanisms, Wiley, New York, NY, pp. 87–99 (1973).

    Google Scholar 

  28. L. Stryer,Biochemistry, W. H. Freeman and Co, San Francisco, CA, pp. 166–168 (1981).

    Google Scholar 

  29. L. Q. Evin,Investigation of the substrate specificity of trypsin, Thesis, University of California, San Francisco, CA (1990).

    Google Scholar 

  30. P. A. Lay,Coordination Chemistry Reviews 110, 213–233.

  31. G. V. Jere, and C. C. Patel,J. Sci. Ind. Res. (India)20B, 292–293 (1961).

    CAS  Google Scholar 

  32. F. Baslo, and R. Johnson,Coordination Chemistry, W. A. Benjamin, Inc., New York, NY, pp. 157–161 (1964).

    Google Scholar 

  33. T. M. Kelly, S. A. Stachula, C. R. H. Raetz, and M. S. Anderson,J. Biological Chem. 268, 19866–19874 (1993).

    CAS  Google Scholar 

  34. J. B. Bender, C. W. Hedberg, J. M. Besser, D. J. Boxrud, K. L. MacDonald, and M. T. Osterholm,New England J. Med. 337, 388–394 (1997).

    Article  CAS  Google Scholar 

  35. E. Rondeau, and M. N. Peraldi,New England J. Med. 335, 660–662 (1996).

    Article  CAS  Google Scholar 

  36. R. Steadman, and D. R. Abrahamson,Pseudomonas aeruginosa as an Opportunistic Pathogen. M. Campa, M. Bendinelli, and H. Friedman, eds., Plenum, New York, pp 129–143 (1993).

    Google Scholar 

  37. K. Morihara, and X. Homma,Bacterial Enzymes and Virulence, I. A. Holder, ed., CRC Press, Boca Raton, Fl, pp. 41–75 (1985).

    Google Scholar 

  38. J. Pick,Medizinische Klinik,33, 1270–1271 (1911).

    Google Scholar 

  39. B. L. Meredith, and W. G. Christiansen,J. American Pharmaceutical Assoc. 18, 607–608 (1929).

    Article  CAS  Google Scholar 

  40. A. M. Maurer, K. Merritt, and S. A. Brown,J. Biomed. Mater. Res. 28, 241–246 (1994).

    Article  PubMed  CAS  Google Scholar 

  41. K. Merritt, R. W. Margevicius, and S. A. Brown,J. Biomed. Mater. Res. 26, 1503–1515 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. K. Merritt, and S. A. Brown,J. Biomed. Mater. Res. 29, 1175–1178 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. J. P. McCue,Biochem. Med. 7, 282–287 (1973).

    Article  PubMed  CAS  Google Scholar 

  44. D. F. Williams,J. Bone and joint Surgery (British),76, 348–349 (1994).

    CAS  Google Scholar 

  45. C. W. Berry, T. J. Moore, J. A. Safar, C. A. Henry, and M. J. Wagner,Implant Dentistry 1, 59–65 (1992).

    Article  PubMed  CAS  Google Scholar 

  46. A. Leonhardt, J. Olsson, and G. Dahlen,J. Dental Research 74, 1607–1612 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duffy, B., Schwietert, C., France, A. et al. Transition metals as protease inhibitors. Biol Trace Elem Res 64, 197–213 (1998). https://doi.org/10.1007/BF02783336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783336

Index entries

Navigation