Skip to main content
Log in

Effects of micromolar concentrations of Mn, Mo, and Si on α1adrenoceptor-mediated contraction in porcine coronary artery

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We studied the effects of trace elements, Mn, Mo, and Si, on vasoconstriction induced by norepinephrine (NE) or electrical field stimulation in isolated porcine right coronary arteries. α1-Adrenoceptor (AR) antagonist prazosin dose-despondently suppressed vasoconstriction in response to NE or field stimulation indicating an α1-AR mediated response. Mn, Mo, and Si at 0.3-3 μmol/L dosedespondently inhibited NE mediated contraction (allp < 0.05). In contrast, Mn, Mo, and Si at the same concentrations (0.3-3 μmol/L) enhanced the maximal contractile response to field stimulation in a dose-dependent manner (allp < 0.05), but these elements at 10 μmol/L suppressed the vasoconstrictive response. The results indicate that in porcine right coronary arteries, the α1-AR-mediated vasoconstriction by NE or electrical field stimulation was affected differently by micromolar concentrations of Mn, Mo, and Si and that the elements might facilitate NE release presynaptically but inhibit the contractile response postsynaptically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Baumgart and G. Heusch, Neuronal control of coronary blood flow,Basic Res. Cardiol. 90, 142–159 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. C. Indolfi, F. Piscione, B. Villari, and E. Russolillo, Identification of an α2-adrenoceptors in normal and atherosclerotic human coronary arteries circulation,Circulation 86, 1116–1124 (1992).

    PubMed  CAS  Google Scholar 

  3. J. P. Hieble, D. B. Bylund, D. E. Clarke, D. C. Eikenberg, S. Z. Langer, R. J. Lefkowitz, K. P. Minneman, and R. R. Ruffolo, Jr., International union of pharmacology X. recommendation for nomenclature of α1-adrenoceptors: consensus update,Pharmacol. Rev. 47, 267–270 (1995).

    PubMed  CAS  Google Scholar 

  4. C. Han and K. P. Minneman, α1-adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle,Nature 329, 333–335 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. K. P. Minneman, α1-adrenergic receptor subtypes, inositol phosphates and sources of cell calcium,Pharmacol. Rev. 40, 87–119 (1988).

    PubMed  CAS  Google Scholar 

  6. D. B. Bylund, D. C. Eikenberg, J. P. Hible, S. Z. Langer, R. J. Lefkowitz, K. P. Minneman, P. B. Molinoff, R. R. Ruffolo, Jr., and U. Trendelenburg, Nomenclature of adrenoceptors.Pharmacol. Rev. 46, 121–136 (1994).

    PubMed  CAS  Google Scholar 

  7. G. M. Berkenboom, M. Abramovi, P. Vandermoten, and S. G. Deger, Role of adrenergic coronary tone in exercise-induced angina pectoris,Am. J. Cardiol. 57, 195–198 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. A. C. Bonham, D. D. Gutterman, J. M. Arthur, M. L. Marcus, Neurogenic regulation of coronary blood flow: evidence for a central nervous system pathway,Circ. Res. 61 (suppl. II), II-42–II-46 (1987).

    CAS  Google Scholar 

  9. T. W. Clarkson, Molecular and ionic mimiery of toxic metals,Annu. Rev. Pharmacol. Toxicol. 32, 545–571 (1993).

    Article  Google Scholar 

  10. R. S. Goodhart and M. E. Shiles, The biochemical and nutritional roles of trace elements, in:Modern Nutrition in Health and Disease, 1st ed., Henry Kimpton Publishers, London, pp. 428–437 (1978).

    Google Scholar 

  11. B. Thomas and D. B. Clayton, The trace elements, in:Manual of Dietetic Practice, 1st ed.,Blackwell Science Ltd, London, pp. 180–183 (1994).

    Google Scholar 

  12. B. L. Vallee and K. A. Falchuk, The biochemical basis of Zinc physiology,Physiol. Rev. 73, 79–118 (1993).

    PubMed  CAS  Google Scholar 

  13. B. Katz and R. Miledi, The effects of divalent cations on transmission in the squid giant synapse,Publ. Stn. Zool. Napoli. 37, 303–310 (1969).

    CAS  Google Scholar 

  14. R. R. Linnas, Calcium and transmitter release in squid synapse,Soc. Neurosci. Symp. 2, 139–160 (1977).

    Google Scholar 

  15. M. Bechern, H. G. Glitsch, and L. Pott, Facilitation of acetylcholine release from cardiac parasympathetic nerve endings. Effect of stimulation pattern and Mn ions,Pfliigers Arch. 391, 105–111 (1981).

    Article  Google Scholar 

  16. P. Drapeau and D. Nachshen, Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain,J. Physiol. 348, 493–510 (1984).

    PubMed  CAS  Google Scholar 

  17. S. Hagiwara and S. Miyazak, Ca and Na Spikes in egg cell membrane, in:Cellular Neurobiology, 1st ed., Alan R. Liss, New York, pp. 147–158 (1977).

    Google Scholar 

  18. C. Edwards, The selectivity of ion channels in nerve and muscle,Neuroscience 7, 1335–1366 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. T. J. Williams and D. E. Clarke, Characterization of mediating vasoconstriction to noradrenaline and nerve stimulation in the isolate perfused mesentery of rat,Br. J. Pharmac. 114, 431–536 (1995).

    Google Scholar 

  20. L. J. Sullivan and A. H. Briggs, Effects of manganese on response of aortic strips to angiotensin and norepinephrine contraction,J. Pharmac. Exp. Ther. 161, 205–209 (1968).

    CAS  Google Scholar 

  21. R. Kuribayashi, Effects of Mn and Zn ions contraction of smooth muscle of guinea pig taenia coli,Tohoku J. Exp. Med. 98, 241–247 (1969).

    Article  PubMed  CAS  Google Scholar 

  22. G. A. Collins, M. C. Sutter, and J. C. Teiser, The effects of manganese on the rabbit anterior mesenteric portal vein,Can. J. Physiol. Pharmac.50, 300–309 (1972).

    CAS  Google Scholar 

  23. G. B. Weiss and P. Kutsky, Effects of manganese on45Ca mobilization and contractile responses in rabbit aortic smooth muscle,Gen. Pharmacol.16, 97–102 (1985).

    PubMed  CAS  Google Scholar 

  24. R. Inoue, Effects of Cd2+ and other divalent cations on cabachol-activated non-selective cation channels in guinea pig ileum,J. Physiol. 442, 447–463 (1991).

    PubMed  CAS  Google Scholar 

  25. R. K. Murray and M. I. Kotlikoff, Receptor-activated calcium influx in human airway smooth muscle cells,J. Physiol. 435, 123–144 (1991).

    PubMed  CAS  Google Scholar 

  26. Q. Chen and C. Van Breemen, The superficial buffer barrier in venous smooth muscle sarcoplasmic reticulum refilling and unloading,Br. J. Pharmac. 109, 336–343 (1993).

    CAS  Google Scholar 

  27. E. Haberman and G. Richardt, Intracellular calcium binding proteins as targets for heavy metal ions,Trends Pharmacol. Sci. 7, 298–300 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, M., Lu, Z., Du, XJ. et al. Effects of micromolar concentrations of Mn, Mo, and Si on α1adrenoceptor-mediated contraction in porcine coronary artery. Biol Trace Elem Res 64, 75–87 (1998). https://doi.org/10.1007/BF02783326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783326

Index entries

Navigation