Biological Trace Element Research

, Volume 60, Issue 1–2, pp 153–161 | Cite as

Multivessel system for cold-vapor mercury generation determination of mercury in hair and fish

  • Geraldo R. Boaventura
  • Antonio C. Barbosa
  • Gaston A. East
Original Articles


A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.

Index Entries

Mercury determination cold-vapor atomic absorption spectrometry hair and fish analysis multivessel system for cold vapor mercury generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. Barbosa, A. A. Boischio, G. A. East, I. Ferrari et al., Mercury contamination in the Brazilian Amazon: environmental and occupational aspects,Water, Air and Soil Pollut. 80, 109–121 (1995).CrossRefGoogle Scholar
  2. 2.
    H. Agaki, O. Malm, et al, Human exposure to mercury due to gold mining in the Tapajos river basin, Amazon, Brazil: speciation of mercury in human hair, blood and urine,Water, Air and Soil Pollut. 80, 85–94 (1995).CrossRefGoogle Scholar
  3. 3.
    N. S. Poluektov and R. A. Vitkun, Atomic absorption determination of mercury by means of a flame method,Zh. Anal. Khim. 18, 1–37 (1963).Google Scholar
  4. 4.
    N. S. Poluektov and R. A. Vitkun, and Y. V. Zelyukova, Determination of milligram amounts of mercury by atomic absorption in the gaseous phase,Zh. Anal. Khim. 19, 927–937 (1964).Google Scholar
  5. 5.
    E. G. Pappas and I. A. Rosenberg, Determination of submicrogram quantities of mercury by cold vapor atomic absorption photometry,J. Assoc. Off. Anal. Chem. 49, 782–792 (1966).Google Scholar
  6. 6.
    M. M. Schachter, Apparatus for cold vapor atomic absorption of mercury,J. Assoc. Off. Anal. Chim. 49, 769–778 (1966).Google Scholar
  7. 7.
    A. R. Barringer, Interference-free spectrometer for high sensitivity mercury analysis of soils, rocks and air,Trans. Inst. Min. Metall. B75, 120 (1966).Google Scholar
  8. 8.
    T. R. Gilbert and D. N. Hume, Improved apparatus for determination of mercury by flameless atomic absorption,Anal. Chim. Acta 65, 461–465 (1973).CrossRefGoogle Scholar
  9. 9.
    L. Lopez-Escobar and D. N. Hume, Ozone as releasing agent: The determination of trace mercury in organic matrices by cold vapor atomic absorption,Anal. Lett. 6(4), 343–353 (1973).Google Scholar
  10. 10.
    W. R. Hatch and W. L. Ott, Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry,Anal. Chem. 40(14), 2085–2087 (1968).CrossRefGoogle Scholar
  11. 11.
    K. C. Thompson and G. D. Reynolds, The atomic-fluorescence determination of mercury by the cold vapor technique,Analyst 66, 771–775 (1971).CrossRefGoogle Scholar
  12. 12.
    L. Magos, Selective atomic absorption determination of inorganic mercury and methyl mercury in undigested biological samples,Analyst 96, 847–853 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Magos and W. Clarckson, Analytical procedure for determination of mercury in biological samples,J. Assoc. Off. Anal. Chem. 55, 966–971 (1972).PubMedGoogle Scholar
  14. 14.
    R. J. Watling, The determination of mercury at picogram/litter levels in water with a microwave-induced argon plasma emission system,Anal. Chim. Acta 75, 281–288 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    W. K. Panaro, D. Erickson, and I. S. Krull, Determination of methylmercury in fish by gas chromatography-direct current plasma atomic emission spectrometry,Analyst 112, 1097–1105 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Lansens, C. Meuleman, M. Leermakers, and W. Baeyens, Determination of methylmercury in natural waters by headspace gas chromatography with microwave-induced plasma detection after preconcentration on a resin containing dithiocarbamate groups,Anal. Chim. Acta 234, 417–424 (1990).CrossRefGoogle Scholar
  17. 17.
    P. Brunmark, G. Skarping, and A. Schutz, Determination of methylmercury in human blood using capillary gas chromatography and selected-ion monitoring,J. Chromatogr. Biom. Appl. 573, 35–41 (1992).CrossRefGoogle Scholar
  18. 18.
    R. D. Wilken, Mercury analysis: a special example of species analysis,F. J. Anal. Chem. 342, 795–801 (1992).CrossRefGoogle Scholar
  19. 19.
    T. Guo and J. Baasner, On-line microwave sample pretreatment for the determination of mercury in blood by flow injection cold vapor atomic absorption spectrometry,Talanta 40(12), 1927–1936 (1993).CrossRefGoogle Scholar
  20. 20.
    T. Guo and J. Baasner, Determination of mercury in urine by flow-injection cold vapor atomic absorption spectrometry,Anal. Chim. Acta 278, 189–196 (1993).CrossRefGoogle Scholar
  21. 21.
    C. Pasquini, W. F. Jardim, and L. C. Faria, Actaptation of a cold vapor mercury analyzer to flow injection analysis,J. Auton. Chem. 10(4), 188–191 (1988).Google Scholar
  22. 22.
    M. C. Rezende, R. C. Campos, and A. J. Curtius, Speciation of mercury in fish samples by solvent extraction, methylmercury reduction directly in the organic medium and cold vapor atomic absorption spectrometry,J. Anal. At. Spedrom. 8(2), 247–251 (1993).CrossRefGoogle Scholar
  23. 23.
    F. Palmisano; P. G. Zambonin, and N. Cardellicchio, Speciation and simultaneous determination of mercury species in dolphin liver by liquid chromatography with online cold vapor atomic absorption spectrometry,F. J. Anal. Chem. 346(6–9), 648–652 (1993).CrossRefGoogle Scholar
  24. 24.
    B. Aizpun M. L. Fernandez E. Blanco, and A. Sanz-Medel, Speciation of inorganic mercury(II) and methylmercury by vesicle-mediated high-performance liquid chromatography coupled to cold vapor atomic absorption spectrometry,J. Anal. At. Spectrom. 9(11), 1279–1284 (1994).CrossRefGoogle Scholar
  25. 25.
    G. L. Long and J. D. Winefordner, Limit of Detection—A closer look at the IUPAC definition,Anal. Chem. 55(7), 712A-724A (1983).CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Geraldo R. Boaventura
    • 1
  • Antonio C. Barbosa
    • 2
  • Gaston A. East
    • 2
  1. 1.Instituto de GeociÊnciasUniversidade de BrasiliaBrasíliaBrazil
  2. 2.Departamento de QuimicaUniversidade de BrasiliaBrasíliaBrazil

Personalised recommendations