Skip to main content
Log in

Analysis of trace elements in animal tissues

III. Determination of managanese by graphite furnace atomic absorption spectrophotometry

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Graphite furnace atomic absorption spectrophotometry is a method used for the measurement of low concentrations of manganese (ppb range). Despite the widespread use of this technique, there is considerable inconsistency concerning sample preparation and choice of instrumental parameters. In this paper, we determined manganese concentrations of National Bureau of Standards (NBS) bovine liver by both graphite furnace (Instrumentation Laboratory IL 555B) and flame atomic absorption following wet digestion of the sample with nitric acid. The following instrumental parameters for the graphite furnace were found optimal for the measurement of manganese in digested NBS bovine liver: inert gas flow=14 SCFH, drying temperature 100°C/15 s (step 1), 125°C/15 s (step 2), pyrolysis temperature 500°C/15 s (step 3), and 1000°C/15 s (step 4); atomization temperature 2250°C/10 s (step 5). For optimal results, the nitric acid concentration of the sample should be between 2 and 4M. There were no significant differences found for manganese concentrations determined by either peak height or peak area measurement. Additionally, no significant differences were found in manganese concentrations determined by flame or furnace methods. Assuming proper sample preparation and choice of instrumental parameters, values obtained for manganese concentration by graphite furnace and flame atomic absorption spectrophotometry are similar. Therefore, data obtained by these two methods can be compared directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Versieck, R. Cornelis, G. Lemey, and A. J. De Rudder,Clin. Chem. 26, 531 (1980).

    PubMed  CAS  Google Scholar 

  2. P. S. Papavasiliou and G. Cotzias,J. Biol. Chem. 236, 2365 (1961).

    PubMed  CAS  Google Scholar 

  3. M. S. Clegg, C. L. Keen, B. Lonnerdal, and L. S. Hurley,Biol. Trace Element Res. 3, 107 (1981).

    CAS  Google Scholar 

  4. M. S. Clegg, C. L. Keen, B. Lonnerdal, and L. S. Hurley,Biol. Trace Element Res. 3, 237 (1981).

    Article  CAS  Google Scholar 

  5. R. E. Sturgeon, C. L. Chakraborti, I. S. Maines, and P. C. Bertels,Anal. Chem. 47, 1240 (1975).

    Article  CAS  Google Scholar 

  6. R. E. Sturgeon, C. L. Chakraborti, and P. C. Bertels,Anal. Chem. 47, 1251 (1975).

    Google Scholar 

  7. A. Smeyers-Verbeke, Y. Micholfe, P. Vandenwinkel, and P. C. Mussart,Anal. Chem. 48, 124 (1976).

    Article  Google Scholar 

  8. P. Geladi and F. Adams,Anal. Chim. Acta 105, 219 (1979).

    Article  CAS  Google Scholar 

  9. D. L. D’Amico and M. L. Klawans,Anal. Chem. 48, 1469 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. E. Bonilla,Clin. Chem. 24, 471 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clegg, M.S., Keen, C.L., Lonnerdal, B. et al. Analysis of trace elements in animal tissues. Biol Trace Elem Res 4, 145–156 (1982). https://doi.org/10.1007/BF02783254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783254

Index Entries

Navigation