The importance of boron nutrition for brain and psychological function


Boron (B) nutriture has been related to bone, mineral and lipid metabolism, energy utilization, and immune function. As evidence accumulates that B is essential for humans, it is important to consider possible relationships between B nutriture and brain and psychological function. Five studies conducted in our laboratory are reviewed. Assessments of brain electrical activity in both animals and humans found that B deprivation results in decreased brain electrical activity similar to that observed in nonspecific malnutrition. Assessments of cognitive and psychomotor function in humans found that B deprivation results in poorer performance on tasks of motor speed and dexterity, attention, and short-term memory. However, little support was found for anecdotal reports that supplementation with physiologic amounts of B helps alleviate the somatic and psychological symptoms of menopause. Parallels between nutritional and toxicological effects of B on brain and psychological function are presented, and possible biological mechanisms for dietary effects are reviewed. Findings support the hypothesis that B nutriture is important for brain and psychological function in humans.

This is a preview of subscription content, log in to check access.


  1. 1.

    C. D. Hunt, Boron, inEncyclopedia of Food Science, Food Technology and Nutrition, vol. 1, R. Macrae, R. K. Robinson, and M. J. Sadler, eds., Academic, London, pp. 440–447 (1993).

    Google Scholar 

  2. 2.

    F. H. Nielsen, The saga of boron in food: from a banished food preservative to a beneficial nutrient for humans,Curr. Topics Plant Biochem. Physiol. 10, 274–286 (1991).

    CAS  Google Scholar 

  3. 3.

    J. G. Penland and M. J. Eberhardt, Effects of dietary boron and magnesium on brain function in mature male and female Long-Evans rats,J. Trace Elem. Exp. Med. 6, 53–64 (1993).

    CAS  Google Scholar 

  4. 4.

    J. G. Penland, Qualitative analysis of EEG effects following experimental marginal magnesium and boron deprivation,Magnesium Res. 8, 341–358 (1995).

    CAS  Google Scholar 

  5. 5.

    J. G. Penland, Effects of low dietary boron (B) and magnesium (Mg) on the brain function of healthy adults,FASEB J. 3, A1242 (1989).

    Google Scholar 

  6. 6.

    J. G. Penland, Dietary boron, brain function and cognitive performance,Environ. Health Perspectives 102(Suppl. 7), 65–72 (1994).

    CAS  Google Scholar 

  7. 7.

    J. G. Penland and F. H. Nielsen, Supplemental boron affects somatic and psychological symptoms in healthy perimenopausal women,FASEB J. 9, A585 (1995).

    Google Scholar 

  8. 8.

    J. G. Penland, B. G. Salwer, and L. M. Klevay, Brain electrophysiology in adult rats fed copper deficient diets,J. Trace Element Exp. Med. 2, 239–256 (1989).

    CAS  Google Scholar 

  9. 9.

    S. L. Meecham and C. D. Hunt, Dietary boron intakes in selected populations of the United States,Biol. Trace Element Res. (this vol.).

  10. 10.

    F. H. Nielsen, L. M. Mullen, and S. K. Gallagher, Effect of boron depletion and repletion on blood indicators of calcium status in humans fed a low-magnesium diet,J. Trace Element Exp. Med. 3, 45–54 (1990).

    CAS  Google Scholar 

  11. 11.

    F. H. Nielsen, Boron enhances the effect of estrogen therapy in postmenopausal women,FASEB J. 5, A1646 (1991).

    Google Scholar 

  12. 12.

    R. D. Griesel, Psychophysiological sequelae of Kwashiorkor, inMalnutrition and Behavior: Critical Assessment of Key Issues, J. Brozek and B. Schurch, eds., Nestle Foundation, Lausanne, Switzerland, pp. 157–163 (1984).

    Google Scholar 

  13. 13.

    K. N. Agarwal, D. Das, D. K. Agarwal, S. K. Upadhyay, and S. Mishra, Soft neurological signs and EEG pattern in rural malnourished children,Acta Pediatr. Scand. 78, 873–878 (1989).

    Article  CAS  Google Scholar 

  14. 14.

    R. W. Thatcher and D. S. Cantor, Electrophysiological techniques in the assessment of malnutrition, inMalnutrition and Behavior: Critical Assessment of Key Issues, J. Brozek and B. Schurch, eds., Nestle Foundation, Lausanne, Switzerland, pp. 116–136 (1984).

    Google Scholar 

  15. 15.

    T. L. Petit and D. P. Aflano, Neurobiological and behavioral effects of lead, inNeurobiology of the Trace Elements, vol. 2, I. E. Dreosti and R. M. Smith, eds., Humana, Clifton, NJ, pp. 97–139 (1983).

    Google Scholar 

  16. 16.

    T. L. Petit,Aluminum Neurobiological Toxicology, vol. 2, I. E. Dreosti and R. M. Smith, eds., Humana, Clifton, NJ, pp. 237–274 (1983).

    Google Scholar 

  17. 17.

    A. Rechtschaffen and A. A. Kales,Manual of Standardized Terminology, Techniques and Scoring for Sleep Stages of Human Subjects, Brain Information Service, University of California, Los Angeles (1968).

    Google Scholar 

  18. 18.

    A. Gale, Some EEG correlates of sustained attention, inVigilance, R. R. Mackie, ed., Plenum, New York, pp. 263–283 (1977).

    Google Scholar 

  19. 19.

    N. Roth and G. Sack, Relations between slow (4 cps) EEG activity, sensorimotor speed, and psychopathology,Int. J. Psychophysiol. 9, 121–127 (1990).

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    W. Klimesch, H. Schimke, G. Ladurner, and G. Pfurtscheller, Alpha frequency and memory performance,J. Psychophysiol. 4, 381–390 (1990).

    Google Scholar 

  21. 22.

    R. A. Zappulla, Fundamentals and applications of quantified electrophysiology,Annals of the New York Academy of Sciences, vol. 620, pp. 1–21 (1991).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    J. M. R. Delgado, Cerebral effects of decaborane on the monkey,Arch. Int. Pharmacodyn. 148, 459–170 (1964).

    PubMed  CAS  Google Scholar 

  23. 23.

    H. J. Low and G. Freeman, Boron hydride (borane) intoxication in man,Arch. Ind. Health 16, 523–531 (1957).

    Google Scholar 

  24. 24.

    C. C. Pfeiffer, L. F. Hallman, and I. Gersh, Boric acid ointment. A study of possible intoxication in the treatment of burns,J. Am. Med. Assoc. 128, 266–274 (1945).

    Article  CAS  Google Scholar 

  25. 25.

    A. S. Gordon, J. S. Pritchard, and M. H. Freedman, Seizure disorders and anemia associated with chronic borax intoxication,Can. Med. Assoc. J. 108, 719–724 (1973).

    PubMed  CAS  Google Scholar 

  26. 26.

    J. H. Merritt, E. J. Schultz, and A. A. Wykes, Effect of decaborane on the norepinephrine content of the rat brain,Biochem. Pharmacol. 13, 1364–1366 (1964).

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    H. M. Rozendaal, Clinical observations on the toxicology of boron hydrates,Arch. Ind. Hyg. 4, 257–260 (1951).

    CAS  Google Scholar 

  28. 28.

    D. B. Sisk, Acute, fatal illness in cattle exposed to boron fertilizer,J. Am. Vet. Med. Assoc. 193, 943–945 (1988).

    PubMed  CAS  Google Scholar 

  29. 29.

    Subcommittee on Mineral Toxicity in Animals,Boron, National Academy Sciences, Washington, DC, pp. 71–83 (1980).

    Google Scholar 

  30. 30.

    J. L. Svirbely, Acute toxicity studies of decaborance and pentaborane by inhalation.Arch. Ind. Hyg. Occup. Med. 10, 305–311 (1954).

    CAS  Google Scholar 

  31. 31.

    R. von Berg, Toxicology update,J. Appl. Toxicol. 12, 149–152 (1992).

    Article  Google Scholar 

  32. 32.

    R. W. Schayer and M. A. Reilly, Effect of decaborane on histamine formation in mice,J. Pharmacol. Exp. Ther. 177, 177–180 (1971).

    PubMed  CAS  Google Scholar 

  33. 33.

    J. H. Merritt and T. S. Sulkowski, Inhibition of aromatic L-amono acid decarboxylation by decaborane,Biochem. Pharmaol. 16, 369–373 (1967).

    Article  CAS  Google Scholar 

  34. 34.

    U. S. von Euler and F. Lishajko, Catecholamine depletion and uptake in adrenergic nerve vesicles and in rabbit organs after decaborane,Acta Physiol. Scand. 65, 324–330 (1965).

    Article  Google Scholar 

  35. 35.

    H. H. Reynolds and K. C. Back, Effect of decaborane injection on operant behavior of monkeys,Toxicol. Appl. Pharmacol. 8, 197–209 (1966).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    R. P. Hart, J. J. Silverman, L. K. Garrettson, C. Schulz, and R. M. Hamer, Neuropsychological function following mild exposure to pentaborane,Am. J. Ind. Med. 6, 37–44 (1984).

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    C. D. Seaborn and F. H. Nielsen, Boron and silicon: effects on growth, plasma lipids, urinary cyclic amp and bone and brain mineral composition of male rats,Env. Toxicol. Chem. 13, 941–947 (1994).

    Article  CAS  Google Scholar 

  38. 38.

    C. D. Hunt, Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick,Biol. Trace Element Res. 22, 201–220 (1989).

    Article  CAS  Google Scholar 

  39. 39.

    C. D. Hunt and B. J. Stoecker, Deliberations and evaluations of the approaches, endpoints and paradigms for boron, chromium and fluoride dietary recommendations,J. Nutr. 126, 2441S-2451S (1996).

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to James G. Penland.

Additional information

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable. The US Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer, and all agency services are available without discrimination.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Penland, J.G. The importance of boron nutrition for brain and psychological function. Biol Trace Elem Res 66, 299–317 (1998).

Download citation

Index entries

  • Boron nutrition
  • brain function
  • electroencephalogram
  • psychological function
  • cognition
  • behavior
  • toxicology
  • human
  • animal