Biological Trace Element Research

, Volume 66, Issue 1–3, pp 299–317 | Cite as

The importance of boron nutrition for brain and psychological function

  • James G. Penland


Boron (B) nutriture has been related to bone, mineral and lipid metabolism, energy utilization, and immune function. As evidence accumulates that B is essential for humans, it is important to consider possible relationships between B nutriture and brain and psychological function. Five studies conducted in our laboratory are reviewed. Assessments of brain electrical activity in both animals and humans found that B deprivation results in decreased brain electrical activity similar to that observed in nonspecific malnutrition. Assessments of cognitive and psychomotor function in humans found that B deprivation results in poorer performance on tasks of motor speed and dexterity, attention, and short-term memory. However, little support was found for anecdotal reports that supplementation with physiologic amounts of B helps alleviate the somatic and psychological symptoms of menopause. Parallels between nutritional and toxicological effects of B on brain and psychological function are presented, and possible biological mechanisms for dietary effects are reviewed. Findings support the hypothesis that B nutriture is important for brain and psychological function in humans.

Index entries

Boron nutrition brain function electroencephalogram psychological function cognition behavior toxicology human animal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Hunt, Boron, inEncyclopedia of Food Science, Food Technology and Nutrition, vol. 1, R. Macrae, R. K. Robinson, and M. J. Sadler, eds., Academic, London, pp. 440–447 (1993).Google Scholar
  2. 2.
    F. H. Nielsen, The saga of boron in food: from a banished food preservative to a beneficial nutrient for humans,Curr. Topics Plant Biochem. Physiol. 10, 274–286 (1991).Google Scholar
  3. 3.
    J. G. Penland and M. J. Eberhardt, Effects of dietary boron and magnesium on brain function in mature male and female Long-Evans rats,J. Trace Elem. Exp. Med. 6, 53–64 (1993).Google Scholar
  4. 4.
    J. G. Penland, Qualitative analysis of EEG effects following experimental marginal magnesium and boron deprivation,Magnesium Res. 8, 341–358 (1995).Google Scholar
  5. 5.
    J. G. Penland, Effects of low dietary boron (B) and magnesium (Mg) on the brain function of healthy adults,FASEB J. 3, A1242 (1989).Google Scholar
  6. 6.
    J. G. Penland, Dietary boron, brain function and cognitive performance,Environ. Health Perspectives 102(Suppl. 7), 65–72 (1994).Google Scholar
  7. 7.
    J. G. Penland and F. H. Nielsen, Supplemental boron affects somatic and psychological symptoms in healthy perimenopausal women,FASEB J. 9, A585 (1995).Google Scholar
  8. 8.
    J. G. Penland, B. G. Salwer, and L. M. Klevay, Brain electrophysiology in adult rats fed copper deficient diets,J. Trace Element Exp. Med. 2, 239–256 (1989).Google Scholar
  9. 9.
    S. L. Meecham and C. D. Hunt, Dietary boron intakes in selected populations of the United States,Biol. Trace Element Res. (this vol.).Google Scholar
  10. 10.
    F. H. Nielsen, L. M. Mullen, and S. K. Gallagher, Effect of boron depletion and repletion on blood indicators of calcium status in humans fed a low-magnesium diet,J. Trace Element Exp. Med. 3, 45–54 (1990).Google Scholar
  11. 11.
    F. H. Nielsen, Boron enhances the effect of estrogen therapy in postmenopausal women,FASEB J. 5, A1646 (1991).Google Scholar
  12. 12.
    R. D. Griesel, Psychophysiological sequelae of Kwashiorkor, inMalnutrition and Behavior: Critical Assessment of Key Issues, J. Brozek and B. Schurch, eds., Nestle Foundation, Lausanne, Switzerland, pp. 157–163 (1984).Google Scholar
  13. 13.
    K. N. Agarwal, D. Das, D. K. Agarwal, S. K. Upadhyay, and S. Mishra, Soft neurological signs and EEG pattern in rural malnourished children,Acta Pediatr. Scand. 78, 873–878 (1989).CrossRefGoogle Scholar
  14. 14.
    R. W. Thatcher and D. S. Cantor, Electrophysiological techniques in the assessment of malnutrition, inMalnutrition and Behavior: Critical Assessment of Key Issues, J. Brozek and B. Schurch, eds., Nestle Foundation, Lausanne, Switzerland, pp. 116–136 (1984).Google Scholar
  15. 15.
    T. L. Petit and D. P. Aflano, Neurobiological and behavioral effects of lead, inNeurobiology of the Trace Elements, vol. 2, I. E. Dreosti and R. M. Smith, eds., Humana, Clifton, NJ, pp. 97–139 (1983).CrossRefGoogle Scholar
  16. 16.
    T. L. Petit,Aluminum Neurobiological Toxicology, vol. 2, I. E. Dreosti and R. M. Smith, eds., Humana, Clifton, NJ, pp. 237–274 (1983).Google Scholar
  17. 17.
    A. Rechtschaffen and A. A. Kales,Manual of Standardized Terminology, Techniques and Scoring for Sleep Stages of Human Subjects, Brain Information Service, University of California, Los Angeles (1968).Google Scholar
  18. 18.
    A. Gale, Some EEG correlates of sustained attention, inVigilance, R. R. Mackie, ed., Plenum, New York, pp. 263–283 (1977).CrossRefGoogle Scholar
  19. 19.
    N. Roth and G. Sack, Relations between slow (4 cps) EEG activity, sensorimotor speed, and psychopathology,Int. J. Psychophysiol. 9, 121–127 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    W. Klimesch, H. Schimke, G. Ladurner, and G. Pfurtscheller, Alpha frequency and memory performance,J. Psychophysiol. 4, 381–390 (1990).Google Scholar
  21. 22.
    R. A. Zappulla, Fundamentals and applications of quantified electrophysiology,Annals of the New York Academy of Sciences, vol. 620, pp. 1–21 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    J. M. R. Delgado, Cerebral effects of decaborane on the monkey,Arch. Int. Pharmacodyn. 148, 459–170 (1964).PubMedGoogle Scholar
  23. 23.
    H. J. Low and G. Freeman, Boron hydride (borane) intoxication in man,Arch. Ind. Health 16, 523–531 (1957).Google Scholar
  24. 24.
    C. C. Pfeiffer, L. F. Hallman, and I. Gersh, Boric acid ointment. A study of possible intoxication in the treatment of burns,J. Am. Med. Assoc. 128, 266–274 (1945).CrossRefGoogle Scholar
  25. 25.
    A. S. Gordon, J. S. Pritchard, and M. H. Freedman, Seizure disorders and anemia associated with chronic borax intoxication,Can. Med. Assoc. J. 108, 719–724 (1973).PubMedGoogle Scholar
  26. 26.
    J. H. Merritt, E. J. Schultz, and A. A. Wykes, Effect of decaborane on the norepinephrine content of the rat brain,Biochem. Pharmacol. 13, 1364–1366 (1964).PubMedCrossRefGoogle Scholar
  27. 27.
    H. M. Rozendaal, Clinical observations on the toxicology of boron hydrates,Arch. Ind. Hyg. 4, 257–260 (1951).Google Scholar
  28. 28.
    D. B. Sisk, Acute, fatal illness in cattle exposed to boron fertilizer,J. Am. Vet. Med. Assoc. 193, 943–945 (1988).PubMedGoogle Scholar
  29. 29.
    Subcommittee on Mineral Toxicity in Animals,Boron, National Academy Sciences, Washington, DC, pp. 71–83 (1980).Google Scholar
  30. 30.
    J. L. Svirbely, Acute toxicity studies of decaborance and pentaborane by inhalation.Arch. Ind. Hyg. Occup. Med. 10, 305–311 (1954).Google Scholar
  31. 31.
    R. von Berg, Toxicology update,J. Appl. Toxicol. 12, 149–152 (1992).CrossRefGoogle Scholar
  32. 32.
    R. W. Schayer and M. A. Reilly, Effect of decaborane on histamine formation in mice,J. Pharmacol. Exp. Ther. 177, 177–180 (1971).PubMedGoogle Scholar
  33. 33.
    J. H. Merritt and T. S. Sulkowski, Inhibition of aromatic L-amono acid decarboxylation by decaborane,Biochem. Pharmaol. 16, 369–373 (1967).CrossRefGoogle Scholar
  34. 34.
    U. S. von Euler and F. Lishajko, Catecholamine depletion and uptake in adrenergic nerve vesicles and in rabbit organs after decaborane,Acta Physiol. Scand. 65, 324–330 (1965).CrossRefGoogle Scholar
  35. 35.
    H. H. Reynolds and K. C. Back, Effect of decaborane injection on operant behavior of monkeys,Toxicol. Appl. Pharmacol. 8, 197–209 (1966).PubMedCrossRefGoogle Scholar
  36. 36.
    R. P. Hart, J. J. Silverman, L. K. Garrettson, C. Schulz, and R. M. Hamer, Neuropsychological function following mild exposure to pentaborane,Am. J. Ind. Med. 6, 37–44 (1984).PubMedCrossRefGoogle Scholar
  37. 37.
    C. D. Seaborn and F. H. Nielsen, Boron and silicon: effects on growth, plasma lipids, urinary cyclic amp and bone and brain mineral composition of male rats,Env. Toxicol. Chem. 13, 941–947 (1994).CrossRefGoogle Scholar
  38. 38.
    C. D. Hunt, Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick,Biol. Trace Element Res. 22, 201–220 (1989).CrossRefGoogle Scholar
  39. 39.
    C. D. Hunt and B. J. Stoecker, Deliberations and evaluations of the approaches, endpoints and paradigms for boron, chromium and fluoride dietary recommendations,J. Nutr. 126, 2441S-2451S (1996).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • James G. Penland
    • 1
  1. 1.US Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand Forks

Personalised recommendations