Skip to main content
Log in

High-temperature deformation mechanisms and constitutive equations for the oxide dispersion-strengthened superalloy MA 956

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An experimental study of the constitutive response of the oxide dispersion-strengthened (ODS) superalloy MA 956, which consists of an Fe-Cr-Al matrix dispersion strengthened with yttria, has been performed.Single-crystal specimens of MA 956 having remarkably simple initial microstructures have been tested in compression in the temperature range of 900 °C to 1200 °C and in the axial strain-rate range of 1.8 x 10-4 s-1 to 10-2 s-1. The deformation response of the material has been examined by performing constant true strain-rate tests, strain-rate jump tests, and stress relaxation tests. The orientation dependence of the stress-strain response of the single crystals has been compensated for by determining the operative slip systems and resolving the stresses and strains accordingly. These experiments, together with electron-microscopic observations of deformed and quenched specimens, allow a number of conclusions to be drawn about the physics of particle strengthening in this simple ODS alloy at high temperatures. Further, drawing on this physical understanding, a set of phenomenological internal variable constitutive equations which model the high-temperature deformation behavior of this alloy is also developed. These equations reasonably well model not only the temperature and strain-rate sensitivity of the flow stress but also the strain-hardening behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Brown and R.K. Ham:Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amsterdam, 1971, p. 9.

    Google Scholar 

  2. R.S.W. Shewfelt and L.M. Brown:Phil. Mag., 1977, vol. 35, pp. 945–62.

    Article  CAS  Google Scholar 

  3. R.W. Lund and W.D. Nix:Acta Metall., 1976, vol. 24, pp. 469–81.

    Article  CAS  Google Scholar 

  4. J.H. Hausselt and W.D. Nix:Acta Metall., 1977, vol. 25, pp. 1491–1502.

    Article  CAS  Google Scholar 

  5. J.D. Whittenberger:Metall. Trans. A, 1979, vol. 10A, pp. 1285–95.

    CAS  Google Scholar 

  6. J.D. Whittenberger:Metall. Trans. A, 1981, vol. 12A, pp. 845–51.

    Google Scholar 

  7. J.D. Whittenberger:Metall. Trans. A, 1984, vol. 15A, pp. 1753–62.

    CAS  Google Scholar 

  8. T.E. Howson, J.E. Stulga, and J.K. Tien:Metall. Trans. A, 1980, vol. 11A, pp. 1599–1607.

    CAS  Google Scholar 

  9. A.H. Cooper, V.C. Nardone, and J.K. Tien:Superalloys 1984: Proc. 5th Int. Conf. on Superalloys, TMS-AIME, Warrendale, PA, 1984, p. 357.

    Google Scholar 

  10. D.J. Srolovitz, R. Petkovic-Luton, and M.J. Luton:Scripta Metall., 1982, vol. 16, pp. 1401–06.

    Article  Google Scholar 

  11. S.M. Allen:Phil. Mag. A, 1981, vol. 43 (2), pp. 325–35.

    Article  CAS  Google Scholar 

  12. M. Haghi: M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1986.

    Google Scholar 

  13. L. Anand:J. Eng. Mater. Technol., 1982, vol. 104, pp. 12–17.

    Article  Google Scholar 

  14. S.B. Brown, K.H. Kim, and L. Anand:Int. J. Plas., 1989, vol. 5, pp. 95–130.

    Article  Google Scholar 

  15. E.E. Underwood:Quantitative Stereology, Addison-Wesley Publishing Company, Reading, MA, 1970, pp. 172–78.

    Google Scholar 

  16. E. Artz and M.F. Ashby:Scripta Metall., 1982, vol. 16, pp. 1285–90.

    Article  Google Scholar 

  17. D.J. Srolovitz, M.J. Luton, R. Petkovic-Luton, D.M. Barnett, and W.D. Nix:Acta Metall., 1984, vol. 32, pp. 1079–88.

    Article  CAS  Google Scholar 

  18. J.H. Schröder and E. Artz:Scripta Metall., 1985, vol. 19, pp. 1129–34.

    Article  Google Scholar 

  19. E. Artz and D.S. Wilkinson:Acta Metall., 1986, vol. 34, pp. 1893–98.

    Article  Google Scholar 

  20. P.B. Hirsch and F.J. Humphreys:Physics of Strength and Plas ticity, A.S. Argon, ed., MIT Press, Cambridge, MA, 1969, pp. 189–216.

    Google Scholar 

  21. J.P. Hirth and J. Lothe:Theory of Dislocations, John Wiley & Sons, Inc., New York, NY, 1982, p. 263.

    Google Scholar 

  22. M.F. Ashby:Physics of Strength and Plasticity, A.S. Argon, ed., MIT Press, Cambridge, MA, 1969, pp. 113–31.

    Google Scholar 

  23. J.W. Martin:Micromechanisms in Particle Hardened Alloys, Cambridge University Press, Cambridge, 1980, p. 44.

    Google Scholar 

  24. H.J. Frost and M.F. Ashby:Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982.

  25. W.R. Manning and O. Hunter:J. Am. Chem. Soc., 1969, vol. 52, pp. 492–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghi, M., Anand, L. High-temperature deformation mechanisms and constitutive equations for the oxide dispersion-strengthened superalloy MA 956. Metall Trans A 21, 353–364 (1990). https://doi.org/10.1007/BF02782415

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782415

Keywords

Navigation