Skip to main content

Advertisement

Log in

Generation of dendritic cells from peripheral blood of patients at different stages of chronic myeloid leukemia

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

We report a method to generate dendritic cells (DC) from frozen leukapheresis products of patients with chronic myeloid leukemia (CML), using sterile culture bags and serum-free culture medium, ie conditions feasible for re-infusion into the patient as part of immunother-apeutic protocols. Leukapheresis products were stored from harvests performed either at diagnosis (13 patients) or after chemotherapy with subsequent granulocyte colony stimulating factor (G-CSF) administration (9 patients), for Peripheral Blood Stem Cell (PBSC) collections. In the presence of optimal concentrations of GM-CSF (50 ng/ml) and IL-4 (40 ng/ml) CML progenitors differentiated on day 7 and 14 of culture to DC, expressing CD1a, HLA-DRand CD86 surface antigens. Mature DCs exhibited on average 12-fold higher allo-stimulatory capacity for CD4+ and CD8+ cells compared to non-cultured PBMC in mixed lymphocyte reaction (MLR). Only DCs obtained from CML patients at diagnosis exhibited bcr/abl fusion gene when tested by fluorescentin situ hybridization (FISH). CD34-selection on leukapheresis products from diagnosis (7 patients) resulted in later maturation of DCs (after 14–15 d), compared to the non-selected PBMC. CD34-selection significantly increased the DC growth, and improved the allo-stimulatory capacity in MLR (on average on day 14, 3.5- and 2.3-fold, respectively). Large differences were observed between individual patients and different leukapheresis products from the same patient. Our report demonstrates the possibility to generateex vivo autologous functionally active DC in CML in a way that allows their clinical application as immunotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarkson BDet al. New understanding of the pathogenesis of CML: a prototype of early neoplasia.Leukemia 1997;11: 1404–1428.

    Article  CAS  PubMed  Google Scholar 

  2. Lim SH, Coleman S. Chronic myeloid leukemia as an immunological target.Am J Hematol 1997;54: 61–67.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Wet al. T-cell immunity to the joining region of p210BCR-ABL protein.Proc Natl Acad Sci USA 1992;89: 1468–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bocchia Met al. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules.Blood 1995;85: 2680–2684.

    Article  CAS  PubMed  Google Scholar 

  5. Bosch GJet al. Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide.Blood 1996;88: 3522–3527.

    Article  CAS  PubMed  Google Scholar 

  6. Pawelec Get al. BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors.Blood 1996;88: 2118–2124.

    Article  CAS  PubMed  Google Scholar 

  7. Buzyn Aet al. Peptides derived from the whole sequence of BCR-ABL bind to several class I molecules allowing specific induction of human cytotoxic T lymphocytes.Eur J Immunol 1997;27: 2066–2072.

    Article  CAS  PubMed  Google Scholar 

  8. Yotnda Pet al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia.J Clin Invest 1998;101: 2290–2296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coleman Set al. Autologous MHC-dependent leukaemia-reactive T lymphocytes in a patient with chronic myeloid leukaemia.Leukemia 1996;10: 483–487.

    CAS  PubMed  Google Scholar 

  10. Steinman RM. Dendritic cells and immune-based therapies.Exp Hematol 1996;24: 859–862.

    CAS  PubMed  Google Scholar 

  11. Mehta-Damani A, Markowicz S, Engleman EG. Generation of antigen-specific CD4+ T cell lines from naive precursors.Eur J Immunol 1995;25: 1206–1211.

    Article  CAS  PubMed  Google Scholar 

  12. Mehta-Damani A, Markowicz S, Engleman EG. Generation of antigen-specific CD8+ CTLs from naive precursors.J Immunol 1994;153: 996–1003.

    Article  CAS  PubMed  Google Scholar 

  13. Romani Net al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability.J Immunol Meth 1996;196: 137–151.

    Article  CAS  Google Scholar 

  14. Porgador A, Gilboa E. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes.J Exp Med 1995;182: 255–260.

    Article  CAS  PubMed  Google Scholar 

  15. Bernhard Het al. Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood.Cancer Res 1995;55: 1099–1104.

    CAS  PubMed  Google Scholar 

  16. Romani Net al. Proliferating dendritic cell progenitors in human blood.J Exp Med 1994;180: 83–93.

    Article  CAS  PubMed  Google Scholar 

  17. Mayordomo JIet al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity.Nature Med 1995;1: 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  18. Ridge JP, Fuchs EJ, Matzinger P. Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells.Science 1996;271: 1723–1726.

    Article  CAS  PubMed  Google Scholar 

  19. Nestle FOet al. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells.Nature Med 1998;4: 328–332.

    Article  CAS  PubMed  Google Scholar 

  20. Coleman Set al. Cytokine enhancement of immunogenicity in chronic myeloid leukaemia.Leukemia 1997;11 2055–2059.

    Article  CAS  PubMed  Google Scholar 

  21. Eibl Bet al. Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response.Genes, Chromosom Cancer 1997;20: 215–223.

    Article  CAS  PubMed  Google Scholar 

  22. Choudhury Aet al. Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia.Blood 1997;89: 1133–1142.

    Article  CAS  PubMed  Google Scholar 

  23. Nieda Met al. Dendritic cells stimulate the expansion of ber-abl specific CD8+T cells with cytotoxic activity against leukemic cells from patients with chronic myeloid leukemia.Blood 1998;91: 977–983.

    Article  CAS  PubMed  Google Scholar 

  24. Smit WMet al. Generation of dendritic cells expressing ber-abl from CD34-positive chronic myeloid leukemia precursor cells.Hum. Immunol 1997;53: 216–223.

    Article  CAS  PubMed  Google Scholar 

  25. Hansson M, Svensson A, Engervall P. Autologous peripheral blood stem cells: collection and processing.Med Oncol 1996;13: 71–79.

    Article  CAS  PubMed  Google Scholar 

  26. Kowalkowski KLet al. Ex vivo generation of dendritic cells from CD34+ cells in gas-permeable containers under serum-free conditions.J Hemother 1998;7: 403–411.

    Article  CAS  Google Scholar 

  27. Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells.Proc Natl Acad Sci USA 1996;93: 2588–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caux Cet al. B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.J Exp Med 1994;180: 1841–1847.

    Article  CAS  PubMed  Google Scholar 

  29. Bernard Jet al. Adherent-free generation of functional dendritic cells from purified blood monocytes in view of potential clinical use.Hematol Cell Ther 1998;40: 17–26.

    CAS  PubMed  Google Scholar 

  30. Steckel F, Degwert J, Hoppe U. Phenotype and alloactivating capacity of dendritic cells generated under different culture conditions from human peripheral blood. In: Banchereau J, Schmitt D (eds).Dendritic Cells in Fundamental and Clinical Immunology vol. 2. Plenum Press: New York, 1995, pp 355–357.

    Chapter  Google Scholar 

  31. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells.Nature 1992;360: 258–261.

    Article  CAS  PubMed  Google Scholar 

  32. Carella AMet al. Intensive conventional chemotherapy can lead to a precocious overshoot of cytogenetically normal blood stem cells (BSC) in chronic myeloid leukemia and acute lymphoblastic leukemia.Leukemia 1992;6 (Suppl 4): 120–123

    PubMed  Google Scholar 

  33. Carella AMet al. Mobilization of cytogenetically ‘normal’ blood progenitors cells by intensive conventional chemotherapy for chronic myeloid and acute lymphoblastic leukemia.Leuk Lymphoma 1993;9: 477–483.

    Article  CAS  PubMed  Google Scholar 

  34. Santiago-Schwarz F, Coppock DL, Hindenburg AA, Kern J. Identification of a malignant counterpart of the monocyte-dendritic cell progenitor in an acute myeloid leukemia.Blood 1994;84: 3054–3062.

    Article  CAS  PubMed  Google Scholar 

  35. Szabolcs Pet al. Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-colony-forming unit intermediate.Blood 1996;87: 4520–4530.

    Article  CAS  PubMed  Google Scholar 

  36. Herbst Bet al. In vitro differentiation of CD34+ hematopoietic progenitor cells toward distinct dendritic cell subsets of the birbeck granule and MIIC-positive Langerhans cell and the interdigitating dendritic cell type.Blood 1996;88: 2541–2548.

    Article  CAS  PubMed  Google Scholar 

  37. Bender Aet al. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood.J Immunol Meth 1996;196: 121–135.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Pisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Pisa, P., Stromberg, O. et al. Generation of dendritic cells from peripheral blood of patients at different stages of chronic myeloid leukemia. Med Oncol 17, 270–278 (2000). https://doi.org/10.1007/BF02782191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782191

Keywords

Navigation