Skip to main content
Log in

Change in apparent and true absorption and retention of dietary zinc with age in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Two groups of 16 rats each were fed the same diet with 12.9 ppm Zn. Nine days after each animal was injected with65Zn for assessing fecal zinc of endogenous origin, zinc intake and excretion were determined for a six-day period at the age of about five (group I) and nine (II) weeks. At mean growth rates of 5.1 and 5.2 g/day, food consumption per gram of gain was 2.01 g in group I vs 2.86 g in II. Overall, zinc retention amounted to 21 vs 25 μg Zn/g of gain. Apparent absorption averaged 92 vs 74% of Zn intake (132 vs 189 μg/day), while true absorption averaged 98 vs 92%. It was concluded that endogenous fecal zinc excretion was limited to the indispensable loss (F em) in group I (7 μg/day), while it exceeded this minimum loss in group II (33 μg/day). True retention, which reflected total zinc utilization (true absorption times metabolic efficiency), was derived from apparent absorption plusF em (11 μg/day for group II according to the greater metabolic body size of the rats). It averaged 98% of Zn intake in group I vs 80% in group II. The mean metabolic efficiency was 100% vs 87%. The conclusion was that these marked differences between age groups in utilizing the dietary zinc reflected the efficient homeostatic adjustments in absorption and endogenous excretion of zinc to the respective zinc supply status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Suso, and H. M. Edwards,Poultry Sci. 47, 991 (1968).

    CAS  Google Scholar 

  2. W. H. Strain, W. J. Pories, E. Michael. R. M. Peer, and S. A. Zaresky, inTrace Element Metabolism in Man and Animals, vol. 3, M. Kirchgessner, ed., Arbeitskreis Tierernährungsforschung Weihenstephan, 1978, pp. 132–135.

  3. H. E. Erdman, D. D. Mahlum, and M. R. Sikov,Int. J. Biochem. 2, 589 (1971).

    Article  Google Scholar 

  4. A. H. Methfessel, and H. Spencer,Rad. Res. 43, 237 (1970).

    Google Scholar 

  5. R. M. Forbes, and M. Yohe,J. Nutr. 70, 53 (1960).

    PubMed  CAS  Google Scholar 

  6. J. Pallauf, and M. Kirchgessner,Z. Tierphysiol., Tierernährg. Futtermittelkde.30, 193 (1972).

    CAS  Google Scholar 

  7. H.-J. Lantzsch, H. Schenkel, and K. H. Menke,Z. Tierphysiol., Tierernährg. Futtermittelkde.38, 106 (1977).

    CAS  Google Scholar 

  8. E. Weigand, and M. Kirchgessner,Nutr. Metabol. 22, 101 (1978).

    CAS  Google Scholar 

  9. M. Kirchgessner, and W. A. Schwarz,Arch. Tierernährg. 26, 3 (1976).

    CAS  Google Scholar 

  10. E. Weigand, and M. Kirchgessner,Z. Tierphysiol., Tierernährg. Futtermittelkdae.39, 325 (1977).

    CAS  Google Scholar 

  11. E. Weigand and M. Kirchgessner, inTrace Element Metabolism in Man and Animals, vol. 3, M. Kirchgessner, ed., Arbeitskreis Tierernährungsforschung Weihenstephan, 1978, pp. 106–109.

  12. J. Pallauf, and M. Kirchgessner,Arch. Tierernährg. 26, 457 (1976).

    CAS  Google Scholar 

  13. E. Weigand, and M. Kirchgessner,Nutr. Metabol. 20, 307 (1976).

    CAS  Google Scholar 

  14. E. Weigand, and M. Kirchgessner,Nutr. Metabol. 20, 314 (1976).

    Article  CAS  Google Scholar 

  15. E. Weigand, and M. Kirchgessner,Z. Tierphysiol., Tierernährg. Futtermittelkde. 42, 44 (1979).

    CAS  Google Scholar 

  16. M. Kirchgessner, and W. Oelschläger,Arch. Tierernährg. 11, 310 (1961).

    Google Scholar 

  17. W. A. Schwarz, and M. Kirchgessner,Arch. Tierernährg. 25, 597 (1975).

    CAS  Google Scholar 

  18. M. Kirchgessner, H. L. Müller, E. Weigand, E. Grassmann, F. J. Schwarz, J. Pallauf, and H.-P. Roth,Z. Tierphysiol. Tierernährg. Futtermittelkde. 34, 3 (1974).

    CAS  Google Scholar 

  19. R. G. D. Steel, and J. H. Torrie,Principles and Procedures of Statistics, McGraw Hill, New York, 1960.

    Google Scholar 

  20. E. Weigand, and M. Kirchgessner,Z. Tierphysiol. Tierernährg. Futtermittelkde. 39, 16 (1977).

    CAS  Google Scholar 

  21. M. Kleiber, A. H. Smith, and T. N. Chernikoff,Am. J. Physiol. 156, 9 (1965).

    Google Scholar 

  22. J. K. Miller, and R. G. Cragle,J. Dairy Sci. 48, 370 (1965).

    Article  PubMed  CAS  Google Scholar 

  23. W. J. Miller, Y. G. Martin, R. P. Centry, and D. M. Blackmon,J. Nutr. 94, 391 (1968).

    PubMed  CAS  Google Scholar 

  24. E. Weigand, and M. Kirchgessner,Z. Tierphysiol. Tierernährg. Futtermittelkde. 39, 84 (1977).

    CAS  Google Scholar 

  25. M. Kirchgessner, and J. Pallauf,Z. Tierphysiol., Tierernährg. Futtermittelkde. 29, 77 (1972).

    CAS  Google Scholar 

  26. J. Pallauf, and M. Kirchgessner,Zbl. Vet. Med. A 19, 594 (1972).

    CAS  Google Scholar 

  27. P. J. Wilkins, P. C. Grey, and I. E. Dreosti,Brit. J. Nutr. 27, 113 (1972).

    Article  PubMed  CAS  Google Scholar 

  28. H.-P. Roth, and M. Kirchgessner,Res. Exp. Med. (Berl.) 174, 283 (1979).

    Article  CAS  Google Scholar 

  29. B. Momčilović, B. Belonje, A. Giroux, and B. G. Shah,Nutr. Rep. Int. 12, 197 (1975).

    Google Scholar 

  30. E. J. Underwood,Trace Elements in Human and Animal Nutrition, 4th ed., Academic Press, New York, 1977, p. 209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigand, E., Kirchgessner, M. Change in apparent and true absorption and retention of dietary zinc with age in rats. Biol Trace Elem Res 1, 347–358 (1979). https://doi.org/10.1007/BF02778836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778836

Key Words

Navigation