Skip to main content
Log in

Implications of reiterative DNA—Metal ion complexes in the induction and development of neoplastic cells

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Experimental data on the content in metal ions of DNA preparations from various neoplastic and healthy tissues are summarized: metal ions are preferentially bound to reiterative DNA sequences, where they may induce conformational variations and thus modify the binding of effector molecules such as repressors and polymerases.

A model is described where essential and toxic metals are successively loaded on ligand acceptor groups of increasing affinity and thus may reach the final active sites: enzymes and reiterative DNA sequences (equated at least partially to regulative DNA sequences). The effects of some molecules, including peptides, antibiotics, growth factors, hormones, and antineoplastic substances, on DNA conformation could be explained in part by their chelating ability.

The neoplastic state may be induced by a modification of metal ion transfer chains: quantitatively by a continuous derepression of genes coding for metal ligands, genes that are only temporarily derepressed during development in normal cells, and qualitatively by modifications of the nucleotidic sequence of structural genes leading to an increase of the chelating ability of the coded metal ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. C. Wacker and B. L. Vallee,J. Biol. Chem. 234, 3257 (1959).

    CAS  Google Scholar 

  2. H. V. Altmann,2nd Jena Symposium Physikalisch Chemie biogener. Makromol., Berlin, Akademie Verlag, 1963, pp. 6, 367.

    Google Scholar 

  3. A. I. Belkobilskii, E. N. Ginturi, L. M. Mosulishvili, and N. Ye. Kharabadze,Biofizika 13, 650 (1968).

    Google Scholar 

  4. E. L. Andronikashvili, L. M. Mosulishvili, A. I. Belokobilski, N. E. Kharabadze, T. K. Tevzieva, and E. Y. Efremova,Cancer Res. 34, 271 (1974).

    PubMed  CAS  Google Scholar 

  5. I. Sissoëff, J. Grisvard, and E. Guille,Progr. Biophys. Molec. Biol. 31, 165 (1976).

    Article  Google Scholar 

  6. S. Apelgot, J. Coppey, M. Duflo, Y. Duval, A. Golde, J. Grisvard, E. Guille, I. Sissoëff, A. Tuffet, and J. Villaudy, unpublished results.

  7. U. Weser and E. Bischoff,Eur. J. Biochem. 12, 571 (1970).

    Article  PubMed  CAS  Google Scholar 

  8. J. Grisvard and E. Guille,Prep. Biochem. 3, 83 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. G. L. Eichhorn and Y. A. Shin,J. Am. Chem. Soc. 90, 7323 (1968).

    Article  PubMed  CAS  Google Scholar 

  10. E. L. Andronikashvili, A. J. Belokobylski, L. M. Mosulishvili, N. E. Kharabadze, and N. I. Shonya,Dokl. Akad. Nauk. S.S.R. 227, 1244 (1976).

    CAS  Google Scholar 

  11. D. R. Williams,Chemical Rev. 72, 203 (1972).

    Article  CAS  Google Scholar 

  12. E. Guille, J. Grisvard, and I. Sissoëff,Biocompatibility, D. F. Williams, ed., Palm Beach, CRC Press, in press, vol. 7.

  13. E. L. Andronikashvili, L. M. Mosulishvili, V. P. Manjgaladze, A. I. Belokobilski, N. E. Kharabadze, and E. Y. Efremova,Dokl. Akad. Nauk. SSR 195, 359 (1970).

    Google Scholar 

  14. M. A. Sirover and L. A. Loeb,Science 174, 1434 (1976).

    Article  Google Scholar 

  15. F. W. Sunderman, Jr.,Fed. Proced. 37, 40 (1978).

    CAS  Google Scholar 

  16. F. W. Sunderman, Jr., T. J. Lau, and L. J. Cralley,Cancer Res. 34, 92 (1974).

    PubMed  CAS  Google Scholar 

  17. S. A. Gunn, S. C. Gould, and W. A. D. Anderson,J. Natl. Cancer Inst. 31, 745 (1963).

    PubMed  CAS  Google Scholar 

  18. S. A. Gunn, T. C. Gould, and W. A. D. Anderson,Proc. Soc. Exp. Biol. Med. 115, 653 (1964).

    PubMed  CAS  Google Scholar 

  19. D. J. Beach and F. W. Sunderman, Jr.,Cancer Res. 30, 48 (1970).

    PubMed  CAS  Google Scholar 

  20. R. M. Maenza, A. M. Praudhan, and F. W. Sunderman, Jr.Cancer Res. 31, 2067 (1971).

    PubMed  CAS  Google Scholar 

  21. F. W. Sunderman, Jr.,Cancer Res. 27, 950 (1967).

    PubMed  CAS  Google Scholar 

  22. B. C. Casto, W. J. Pieczynski, R. C. Nelson, and J. A. Dipaolo,Proc. Am. Assoc. Cancer Res. 17, 12 (1976).

    Google Scholar 

  23. Y. Kamamoto, S. Makiura, S. Sugihara, Y. Hiasa, M. Arai, and N. Ito,Cancer Res. 33, 1129 (1973).

    PubMed  CAS  Google Scholar 

  24. D. R. Winge, R. Premakvwar, and K. V. Rajagopalan,Arch. Biochem. Biophys. 170, 242 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. H. C. Freeman, Adv. Prot. chem.22, 257 (1967).

    Article  CAS  Google Scholar 

  26. L. Pickart and M. M. Thaler,J. Supramol. Struct., Suppl. 2, 336 (1978).

    Google Scholar 

  27. H. Itabashi,Endocrin. Jap. 7, 284 (1960).

    CAS  Google Scholar 

  28. O. V. S. Heath and J. E. Clark,Nature 177, 1118 (1956).

    Article  CAS  Google Scholar 

  29. A. Lindebaum,Metal Ions in Biological Systems, S. K. Dhar, ed., Plenum, New York, 1975, p. 67.

    Google Scholar 

  30. H. C. Hevesy and H. L. Kottmeier,Acta Obstet. Gynecol. Scand. 39, 675 (1960).

    Article  Google Scholar 

  31. F. W. Chandler, Jr. and O. J. Fletcher, Jr.Cancer Res. 33, 342 (1973).

    PubMed  CAS  Google Scholar 

  32. J. A. Fernandez-Pol, V. H. Bond, Jr., and G. S. Johnson,Proc. Natl. Acad. Sci. USA 74, 2889 (1977).

    Article  PubMed  CAS  Google Scholar 

  33. J. A. Fernandez-Pol and G. S. Johnson,Cancer Res. 37, 4276 (1977).

    PubMed  CAS  Google Scholar 

  34. J. A. Fernandez-Pol,Cell 14, 489 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. F. Anders,Zool. Anz.,179, 1 (1967).

    Google Scholar 

  36. E. Alpert, R. L. Coston, and J. W. Drysdale,Nature 242, 194 (1973).

    Article  PubMed  CAS  Google Scholar 

  37. G. P. White, M. Worwood, D. H. Parry, and A. Jacobs,Nature 250, 584 (1974).

    Article  PubMed  CAS  Google Scholar 

  38. D. C. Buffkin, M. M. Webber, W. D. Davidson, L. F. Bassit, and R. C. Verma,Cancer Res. 38, 3225 (1978).

    PubMed  CAS  Google Scholar 

  39. S. Nandi,Cancer Res. 38, 4046 (1978).

    PubMed  CAS  Google Scholar 

  40. W. D. Odell and A. Wolfsen,Cancer 3, F. F. Becker, ed., Plenum, New York, 1975, p. 81.

    Google Scholar 

  41. A. C. Braun,Biochim. Biophys. Acta 516, 167 (1978).

    PubMed  CAS  Google Scholar 

  42. J. A. Lippincott, B. B. Lippincott, and C. C. Chang,Plant Physiol. 49, 131 (1972).

    PubMed  CAS  Google Scholar 

  43. R. J. Sundberg and R. B. Martin,Chem. Rev. 74, 471 (1974).

    Article  CAS  Google Scholar 

  44. R. W. Holley,Nature 258, 487 (1975).

    Article  PubMed  CAS  Google Scholar 

  45. P. S. Rudland, W. Eckhart, D. Gospodarowicz, and W. Siefert,Nature 250, 337 (1974).

    Article  PubMed  CAS  Google Scholar 

  46. G. J. Todaro and J. E. De Larco,Cancer Res. 38, 4147 (1938).

    Google Scholar 

  47. G. D. V. Van Rossum, T. Galeotti, and H. P. Morris,Cancer Res. 33, 1078 (1973).

    PubMed  Google Scholar 

  48. N. R. Smith, R. L. Sparks, T. B. Pool, and I. L. Cameron,Cancer Res. 38, 1952 (1978).

    PubMed  CAS  Google Scholar 

  49. S. S. Shen, S. T. Hamamoto, H. A. Bern, and R. A. Steinhardt,Cancer Res. 38, 1356 (1978).

    PubMed  CAS  Google Scholar 

  50. C. D. Cone,J. Theoret. Biol. 30, 151 (1971).

    Article  CAS  Google Scholar 

  51. M. R. Alvarez,Cancer Res. 33, 786 (1973).

    PubMed  CAS  Google Scholar 

  52. M. Muramatzu, N. Nemoto, N. Inui, and S. Takayama,Cancer Res. 33, 739 (1973).

    Google Scholar 

  53. M. Hayashi, A. C. Griffin, R. Duff, and F. Rapp,Cancer Res. 33, 902 (1973).

    PubMed  CAS  Google Scholar 

  54. T. Boveri,The Origin of Malignant Tumors, Williams and Wilkins, Baltimore, 1929.

    Google Scholar 

  55. G. J. Todaro and R. J. Huebner,Proc. Natl. Acad. Sci. USA 69, 1009 (1972).

    Article  PubMed  CAS  Google Scholar 

  56. C. L. Markert,Cancer Res. 28, 1908 (1968).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guille, E., Grisvard, J. & Sissoëff, I. Implications of reiterative DNA—Metal ion complexes in the induction and development of neoplastic cells. Biol Trace Elem Res 1, 299–311 (1979). https://doi.org/10.1007/BF02778832

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778832

Key Words

Navigation