Skip to main content
Log in

Uterine estrogen sulfatase may play a more important role than the hepatic sulfatase in mediating the uterotropic action of estrone-3-sulfate

  • Orignial Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The estrogenic activity of sulfonated estrogens results from the release of active estrogens via desulfonation (hydrolysis) catalyzed by estrogen sulfatase. In this study, the relative importance of uterine or hepatic estrone (E1)-3-sulfatase in mediating the uterotropic action of E1-3-sulfate is evaluated by comparing its hormonal potency in animals that have comparable uterine E1-3-sulfatase activity but markedly different hepatic enzyme activity. Liver microsomes from immature or adult female Sprague-Dawley rats contained 12-or 55-fold higher E1-3-sulfatase activity, respectively, than the liver microsomes from immature or adult female CD-1 mice. In contrast, uterine whole homogenates from immature female Sprague-Dawley rats contained approx twofold higher E1-3-sulfatase activity than was detected in the uterine whole homogenates from immature female CD-1 mice. It is estimated that the total E1-3-sulfatase activity in the liver of an immature female rat or mouse is approx 1080-or 260-fold higher, respectively, than the activity in the uterus. The ED50 values for the uterotropic effect of E1-3-sulfate and E1 in immature female CD-1 mice were 240 and 8 pmol/g body wt, respectively, and the corresponding ED50 values in immature female Sprague-Dawley rats were 840 and 60 pmol/g body wt, respectively. The difference in the ratios of the uterotropic ED50 for E1-3-sulfate over that for E1 in immature rats and mice (14 and 30, respectively) is 1.14-fold, which correlates very closely with their difference in the uterine E1-3-sulfatase activity (approx twofold), but not their difference in the hepatic sulfatase activity (approx 12-fold). The results of this study provide evidence suggesting that E1-3-sulfatase in the uterus (an estrogen target organ) may play a more important role than the hepatic sulfatase in mediating the uterotropic action of sulfonated estrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E1 :

estrone

E2 :

estradiol

E1-3-sulfate:

estrone-3-sulfate

E1-3-sulfatase:

estrone-3-sulfatase

ED50 :

the dose that elicits a 50% of the maximum response

References

  1. Trévoux, R., De Brux, J., Castanier, M., Nahoul, K., Soule, J.-P., and Scholler, R. (1986).Maturitas 8, 309–326.

    Article  PubMed  Google Scholar 

  2. Millington, D. S. (1975).J. Steroid Biochem. 6, 239–243.

    Article  PubMed  CAS  Google Scholar 

  3. Van Landeghem, A. A. J., Poortman, J., Nabuurs, M., and Thijssen, J. H. H. (1985).Cancer Res.,45, 2900–2906.

    PubMed  Google Scholar 

  4. Twombly, G. H. and Levitz, M. (1960).Am. J. Obstet. Gynecol. 80, 889–326.

    PubMed  CAS  Google Scholar 

  5. Ruder, H. J., Loriaux, L., and Lipsett, M. B. (1972).J. Clin. Invest. 51, 1020–1033.

    Article  PubMed  CAS  Google Scholar 

  6. Santen, R. J. (1986).Cancer Surveys 5, 597–616.

    PubMed  CAS  Google Scholar 

  7. Santner, S. J., Leszczynski, D., Wright, C., Manni, A., Feil, P. D., and Santen, R. J. (1986),Breast Cancer Res. Treatment 7, 35–44.

    Article  CAS  Google Scholar 

  8. Pasqualini, J. R., Gelly, C., Nguyen, B.-L., and Vella, C. (1989).J. Steroid Biochem. 34, 155–163.

    Article  PubMed  CAS  Google Scholar 

  9. Dolly, J. O., Dodgson, K. S., and Ross, F. A. (1972)Biochem. J. 128, 337–345.

    PubMed  CAS  Google Scholar 

  10. Carlstrom, K., Bergqvist, A., and Ljungberg, O. (1988).Fertil. Steril. 49, 229–233.

    PubMed  CAS  Google Scholar 

  11. Loza, M. C. (1995).J. Steroid Biochem. Mol. Biol. 52, 277–280.

    Article  PubMed  CAS  Google Scholar 

  12. Dao, T. L., Hayes, C., and Libby, P. R. (1974).Proc. Soc. Exp. Biol. Med. 146, 381–384.

    PubMed  CAS  Google Scholar 

  13. Santner, S. J., Feil, P. D., and Santen, R. J. (1984),J. Clin. Endocrinol. Metab. 59, 29–33.

    PubMed  CAS  Google Scholar 

  14. Santen, R. J., Leszczynski, D., Tilson-Mallet, N., Feil, P. D., Wright, C., Manni, A., and Santner, S. J. (1986).Ann. N. Y. Acad. Sci. 464, 126–137.

    Article  PubMed  CAS  Google Scholar 

  15. Carlstrom, K., von Uexkull, A.-K., Einhorn, N., Fredricsson, B., Lunell, N.-O., and Sundelin, P. (1983).Acta Obstet. Gynecol. 62, 519–524.

    Article  CAS  Google Scholar 

  16. Holinka, C. F. and Gurpide, E. (1980).Endocrinology 106, 1193–1197.

    PubMed  CAS  Google Scholar 

  17. Thomas, P. E., Reik, L. M., Ryan, D. E., and Levin, W. (1983).J. Biol. Chem.,258, 4590–4598.

    PubMed  CAS  Google Scholar 

  18. MacIndoe, J. H., Woods, G., Jeffries, L., and Hinkhouse, M. (1988).Endocrinology 123, 1281–1287.

    Article  PubMed  CAS  Google Scholar 

  19. Emmens, C. W. (1969). Statistical methods. In:Methods in Hormone Research, vol. IIA, R. I. Dorfman (ed.). Academic: New York, pp. 4–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Ting Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B.T., Fu, JH. Uterine estrogen sulfatase may play a more important role than the hepatic sulfatase in mediating the uterotropic action of estrone-3-sulfate. Endocr 7, 191–198 (1997). https://doi.org/10.1007/BF02778141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02778141

Key Words

Navigation