Skip to main content

Advertisement

Log in

Deconjugation of bile acids by human intestinal bacteria

  • Original Article
  • Published:
Gastroenterologia Japonica Aims and scope Submit manuscript

Summary

The purpose of this report is to present the deconjugation of bile acids by numbers of strains of bacteria in the small intestine and feces. The small intestinal juice was aseptically aspirated by a double lumen tube with a rubber cover on the tip devised by us (“Fukushima Type 1”). Bile acids were analyzed with thin layer chromatography. The results: 1) Among aerobic bacteria, species of which all of the strains split conjugated bile acids was enterococcus, and most of the strains split were Staphylococcus (S.) epidermidis and Lactobacillus (L.) bifidus. Species of which none of the strains split were Escherichia (E.) coli, E. communior, E. freundii, L. plantarum, L. acidophilus, L. buchneri, L. cellobiosus, L. bulgaricus, S. aureus, Aerobacter aerogenes, Pseudomonas aeruginosa, Candida, proteus, serratia, and almost none of the species split was Intermediate coliform bacilli. 2) Among anaerobic bacteria, species of which all of the strains split were Bacteroides (B.) vulgatus, B. thetaiotaomicron, B. uniformis, Corynebacterium (C.) granulosum, C. avidum, Peptostreptococcus (Peptostrept.) putridus, Eubacterium (Eubact.) lentum, Peptococcus (Pept.) grigoroffii, Pept. anaerobius, Veillonella (V.) orbiculus, and most of the strains split were Coryne. diphtheroides, Eubact. parvum, Peptostrept. intermedius. Species of which none of the strains split were Coryne. parvum, Peptostrept. micros, V. alcalescens, V. parvula, Catenabacterium (Catena.) catenaforme, and Catena, filamentosum. 3) All or none, or almost all or none, of the strains of each species tested split conjugated bile acids, and it seems probable that the presence or absence of this ability would be a proper character of each species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerson, CD., Cohen, N. and Janowitz, H.D.: Small intestinal absorptive function in regional enteritis. Gastroenterology, Vol. 64, No. 5, p. 907–912, 1973.

    PubMed  CAS  Google Scholar 

  2. Kern, F. Jr. and Meihoff, W.E.: Bile salt excretion in certain diarrheal states: Bile salt metabolism, Chapter 23, p. 284–296, Charles C. Thomas, Illinois, 1969.

  3. Finegold, S.M.: Intestinal bacteria—The role they play in normal physiology, pathologic physiology, and infection. Calif. Med., 110: 455–459, 1969.

    PubMed  CAS  Google Scholar 

  4. Donaldson, R.M.: Jr. Normal bacterial populations of the intestine and their relation to intestinal function. New Eng. J. Med., 270: 938–945, 994–1001, 1050–1056, 1964.

    Article  PubMed  Google Scholar 

  5. Donaldson, R.M.: Jr. Studies on the pathogenesis of steatorrhea in the blind loop syndrome. J. Clin. Invest., 44: 1815–1825, 1965.

    Article  PubMed  Google Scholar 

  6. Polter, D.E., Boyle, J.D., Miller, L.G., M.A. and Finegold, S.M.: Anaerobic bacteria as cause of the blind loop syndrome. Gastroenterology, 54: 1148, 1968.

    PubMed  CAS  Google Scholar 

  7. Tarao, K.: Anaerobic bacterial flora of small intestine in non-hepatic and hepatic diseased patients. Nippon Schokakibyo Gakkai Zasshi (Jap. J. Gast.), 66: 12, 1414–1423, 1969 (Japanese with Englisch abstracts).

    Google Scholar 

  8. Saito, Y.: Aerobic bacterial flora of small intestine in hepatic and non-hepatic diseased patients. Nippon Schokakibyo Gakkai Zasshi (Jap. J. Gast.), 69: 2, 165–176, 1972 (Japanese with Englisch abstracts).

    CAS  Google Scholar 

  9. Norman, A. and Grubb, R.: Hydrolysis of con-jugated bile acids by clostridia and enterococci. Bile acids and steroids 25. Acta Path. Microbiol. Scand., 36: 537–547, 1955.

    CAS  Google Scholar 

  10. Bergey’s Manual of Determinative Bacteriology 7th Ed. Williams and Wilkins, Baltimore, 1957.

  11. Schaub, I.G.: Identification of gram-negative bacilli, Diagnostic Bacteriology, 5th Ed. p. 134–167, The C.V. Mosby Co., S.T. Louis, 1958.

    Google Scholar 

  12. Mitsuoka, T.: [Classification of lactobacillus]: Modern Media, Vol. 14, No. 2, p. 14–24, Nippon Eiyo Kagaku Co., Tokyo, 1968 (Japanese).

    Google Scholar 

  13. Kazuno, T.: Taisha (Metabolism and Disease), Vol. 2: p. 77–85 (867–875), Nakayamashoten, Tokyo, 1965 (Japanese).

    Google Scholar 

  14. Eneroth, P.: Thin layer chromatography of bile acids. J. Lipid Res., 4: 11, 1963.

    PubMed  CAS  Google Scholar 

  15. Hofmann, A.F.: Thin layer adsorption chromato-graphy of free and conjugated bile acids on silicic acid. J. Lipid Res., 3: 127, 1962.

    CAS  Google Scholar 

  16. Eneroth, P. and Sjovall, J.: Extraction, purifica-tion, and Chromatographic analysis of bile acids in biological materials: The Bile Acids, Vol. 1, Chapter 5, p. 121–171, Plenum, New York, 1971.

    Google Scholar 

  17. Sidney, P. Colowick and Nathan, O. Kaplan: Methods in Enzymology XV, p. 77–88, Academic, New York, 1969.

    Google Scholar 

  18. Kazuno, T.: Kagaku no ryoiki, Extra No. 64, p. 19, Nankodo, Tokyo, 1964 (Japanese).

    Google Scholar 

  19. Ishikawa, M. et al.: [Thin layer chromatography], 4th Ed. Nanzando, Tokyo, 1970 (Japanese).

    Google Scholar 

  20. Nair, P.P.: Enzymes in bile acid metabolism: The Bile Acids, Vol. 2, Chapter 2, p. 259–271, Plenum, New York, 1973.

    Google Scholar 

  21. Drasar, B.S., Hill, M.J. and Shiner, M.: The de-conjugation of bile salts by human intestinal bacteria. Lancet, 1: 1237–1238, 1966.

    Article  PubMed  CAS  Google Scholar 

  22. Hill, M.J. and Drasar, B.S.: Degradation of bile salts by human intestinal bacteria. Gut, 9: 22–27, 1968.

    Article  PubMed  CAS  Google Scholar 

  23. Hill, M.J. and Drasar, B.S.: Degradation of bile salts by human intestinal bacteria. Gut, 10: 575–576, 1969.

    Article  PubMed  Google Scholar 

  24. Midtvedt, T. and Norman, A.: Bile acid trans-formations by microbial strains belonging to genera found in intestinal contents. Acta Path. Microbiol. Scandinav., 71: 629–638, 1967.

    CAS  Google Scholar 

  25. Midtvedt, T. and Norman, A.: Anaerobic, bile acid transforming micro-organisms in rat intestinal content. Acta Path. Microbiol. Scand., 72: 337–344, 1968.

    Article  PubMed  CAS  Google Scholar 

  26. Shimada, K., Bricknell, K.S. and Finegold, S.M.: Deconjugation of bile acids by intestinal bacteria: Review of literature and additional studies. The Journal of Infectious Diseases, 119: 273–281, 1969.

    CAS  Google Scholar 

  27. Sasaki, S.: [Physiology of resident flora], Nippon Saikin Gakkai Zasshi (Jap. J. Bact.), 25(2), 79–94, 1969 (Japanese).

    Google Scholar 

  28. Martini, G.A. et al.: The bacterial content of the small intestine in normal and cirrhotic subjects: relation to methionine toxicity. Clin. Sci., 16: 35–51, 1957.

    PubMed  CAS  Google Scholar 

  29. Fukushima, K. et al.: [Effects of human intestinal flora on the bile acids and bilirubin metabolism] (abstr.), Nippon Naika Gakkai Zasshi (J. Jap. Soc. Internal Med.), 63, No. 8: 86–87, 1974 (Japanese).

    Google Scholar 

  30. Shindo, K. et al.: [Human intestinal flora and bile acids metabolism] (abstr.), Nippon Shokakibyo Gakkai Zasshi (Jap. J. Gast.), 71, No. 5: 69–70, 1974 (Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shindo, K., Fukushima, K. Deconjugation of bile acids by human intestinal bacteria. Gastroenterol Jpn 11, 167–174 (1976). https://doi.org/10.1007/BF02777700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02777700

Key Words

Navigation