Skip to main content

Advertisement

Log in

Mechanisms of cholestasis: a selected review

  • Proceeding
  • Published:
Gastroenterologia Japonica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Desmet VJ: Morphologic and histochemical aspects of cholestasis, in “Progress in Liver Disease” edited by Popper, H. and Schaffner, F., New York, Grune and Stratton, 1972, Vol. 4, p. 97

    Google Scholar 

  2. Phillips MJ, et al: Fine structure of the biliary tree, in “The hepatobiliary system. Fundamental and pathological mechanisms. NATO Advanced Study Inst. Ser., Ser. A.: Life sciences, New York, Plenum Press, 1975, Vol. 7, p. 245

    Google Scholar 

  3. Phillips MJ, et al: Cholestasis, its ultrastructural aspects, in “Toxic Injury of the Liver”, edited by Färber, E. and Fisher, M.M., New York, Marcel Dekker, 1979, Part A, p. 333

    Google Scholar 

  4. Popper H, Schaffner R: Pathophysiology of cholestasis. Human Pathol 1: 1, 1970

    Article  CAS  Google Scholar 

  5. Popper H, Schaffner F: The organelle pathology of cholestasis, in “Intrahepatic Cholestasis, New York, Raven Press, 1975, p. 35

    Google Scholar 

  6. Steiner JE, et al: Progress in Liver Diseases, New York, Grune and Stratton, Vol. 2, 1965, p. 303

  7. Cooper AD, et al: Selective biliary obstruction: a model for the study of lipid metabolism in cholestasis. Gastroenterology 66: 574, 1974

    PubMed  CAS  Google Scholar 

  8. De Vos R, et al: Significance of liver canalicular changes after experimental bile duct ligation. Exp Molec Path 23: 12, 1975

    Article  PubMed  Google Scholar 

  9. De Wolf-Peeters C, et al: Electron microscopy and histochemistry of canalicular differentiation in fetal and neonatal rat liver. Tissue Cell 4: 9, 1972

    Google Scholar 

  10. Layden TJ, Boyer JL: Evidence that bile acids are a determinant of the lobular gradient for canalicular bile secretion. Gastroenterology 73: 1231A, 1977

    Google Scholar 

  11. Yamada K: Ultrastructural changes in liver parenchymal cells of the mouse following post-natal cholecystectomy. Anat Rec 162: 373, 1968

    Article  PubMed  CAS  Google Scholar 

  12. Erlinger S, Dhumeaux D: Mechanisms and control of secretion of bile water and electrolytes. Gastroenterology 66: 281, 1974

    PubMed  CAS  Google Scholar 

  13. Forker EL: Mechanisms of hepatic bile formation. A Rev Physiol 39: 323, 1977

    Article  CAS  Google Scholar 

  14. Javitt N: Hepatic bile formation. New Eng J Med 295: 1464, 1976

    Article  PubMed  CAS  Google Scholar 

  15. Desmet VJ: “Anatomy 1: hepatocyte-canaliculus” in “Liver and Bile” edited by Bianchi, L., Gerok, K. and Sickinger, K. MTP Press, 1977, p. 3

  16. De Duve C: The lysosome in retrospect, in “Lysosomes in Biology and Pathology”, edited by Dingle and Fells, Amsterdam, North-Holland, Vol. 1, 1973, p. 3

    Google Scholar 

  17. Arstila AU, et al: Iron metabolism and cell membranes. II. The relationship of ferritin to the cytocavitary network in rat hepatic parenchymal cells. Am J Path 58: 419, 1970

    PubMed  CAS  Google Scholar 

  18. Jones AL, et al: A morphologic evaluation of the pericanalicular cytoplasm in the rat hepatocytes. in “The Liver, Quantitative Aspects of Structure and Function, edited by Preisig, R., and Bircher, J. Berne, Edito Cantor Aulendorf, 1979, p. 63

  19. Boyer JL, et al: Formation of pericanalicular vacuoles during sodium dehydrocholate choleresis —a mechanism for bile acid transport? in “The Liver, Quantitative Aspects of Structure and Function”, edited by Preisig, R. and Bircher, J. Berne, Edito Cantor Aulendorf, 1979, p. 163

    Google Scholar 

  20. Oda M, et al: Differences in structure and function of type I and type II bile canaliculi in lithocholate induced cholestasis. Gastroenterology 72: 1163, 1977

    Google Scholar 

  21. Estep TN, et al: Studies on the anomalous thermotropic behaviour of aqueous dispersions of dipalmitoylphosphatidyl choline-cholesterol mixtures. Biochemistry 17: 1984, 1978

    Article  PubMed  CAS  Google Scholar 

  22. Kroes J, Ostwald R: Erythrocyte membranes—effect of increased cholesterol content on permeability. Biochim Biophys Acta 249: 647, 1971

    Article  PubMed  CAS  Google Scholar 

  23. Oldfield E, Chapman D: Dynamics of lipids in membranes; heterogeneity and role of cholesterol. FEBS Lett 23: 285, 1972

    Article  PubMed  CAS  Google Scholar 

  24. Oda M, et al: Ultrastructure of bile canaliculi with special reference to the surface coat and the pericanalicular web. Lab Invest 31: 314, 1974

    PubMed  CAS  Google Scholar 

  25. Papahadjopoulos D: Cholesterol and cell membrane function: a hypothesis concerning etiology of atherosclerosis. J Theor Biol 43: 329, 1974

    Article  PubMed  CAS  Google Scholar 

  26. Cooper RA: Abnormalities of cell-membrane fluidity in the pathogenesis of disease. New Engl J Med 297: 371, 1977

    Article  PubMed  CAS  Google Scholar 

  27. Kimelberg H, Papahadjopoulos D: Effects of phospholipid acyl chain fluidity, phase transitions and cholesterol on (Na+, K+)-stimulated adenosine triphosphatase. J Biol Chem 249: 1071, 1974

    PubMed  CAS  Google Scholar 

  28. Miyai K, et al: Acute cholestasis induced by lithocholic acid in the rat. A freeze fracture replica and thin section study. Lab Invest 32: 527, 1975

    Google Scholar 

  29. Miyai K, et al: An ultrastructural look at intrahepatic cholestasis, in “Jaundice” edited by Goresky and Fisher. New York, Plenum Press, 1975, p. 383

    Google Scholar 

  30. Bonvicini F, et al: Cholesterol in acute cholestasis induced by taurolithocholic acid. Lab Invest 38: 487, 1978

    Article  PubMed  CAS  Google Scholar 

  31. Kakis G, Yousef IM: Pathogenesis of lithocholate and taurolithocholate induced intrahepatic cholestasis in rats. Gastroenterology 75: 595, 1978

    PubMed  CAS  Google Scholar 

  32. Kakis G, et al: The respective roles of membrane cholesterol and of sodium potassium adenosine triphosphatase in the pathogenesis of lithocholateinduced cholestasis. Lab Invest 1980. (in press)

  33. Simon FR, et al: Pathogenesis of cholesterol gallstone formation, in “Gallstones” edited by Fisher, M.M., Goresky, C.A., Shaffer, E.A., Strasberg, S.M. New York, Plenum Press, 1979, p. 251

    Google Scholar 

  34. Simon FR, et al: Reversal of ethinyl estradiol induced cholestasis: correlative changes in liver surface membrane (LSM) structure and function. Clin Res 24a: 105, 1976

    Google Scholar 

  35. Phillips MJ, et al: Biochemical pathology of canalicular membranes in intrahepatic cholestasis, in “The Liver, Quantitative aspects of structure and function” edited by Preisig, R. and Bircher, J., Berne, Edito Cantor Aulendorf, 1979

    Google Scholar 

  36. Farquhar M, Palade G: Junctional complexes in various epithelia. J Cell Biol 17: 375, 1963

    Article  PubMed  CAS  Google Scholar 

  37. Claude P, Goodenough DA: Fracture faces of zonulae occludentes from ‘tight’ and ‘leaky’ epithelia. J Cell Biol 58: 390, 1973

    Article  PubMed  CAS  Google Scholar 

  38. Simionescu M, et al: Segmental differentiation of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67: 863, 1975

    Article  PubMed  CAS  Google Scholar 

  39. Stachelin LA: Structure and function of intercellular junctions. Int Rev Cytol 39: 191, 1974

    Article  Google Scholar 

  40. Wade JB, Karnovsky MJ: The structure of the zonula occludens. A single fibril model based on freeze fracture. J Cell Biol 60: 168, 1974

    Article  PubMed  CAS  Google Scholar 

  41. Diamond JM: Tight and leaky junctions of epithelia. A perspective on kisses in the dark. Fed Proc 33: 2220, 1974

    CAS  Google Scholar 

  42. Friend DS, Gilula NB: Variations in tight and gap junctions in mammalian tissues. J Cell Biol 53: 758, 1972

    Article  PubMed  CAS  Google Scholar 

  43. Martinez-Palamo A, Erlij D: Structure of tight junctions in epithelia with different permeability. Proc Nat Acad Sci USA 72: 4487, 1975

    Article  Google Scholar 

  44. Mollgard K, et al: Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature, Lond 264: 293, 1976

    Article  Google Scholar 

  45. De Vos R, Desmet NJL: Morphologic changes of the junctional complex of the hepatocytes in rat liver after bile duct ligation. Br J Exp Path 59: 220, 1978

    Google Scholar 

  46. Metz J, et al: Morphological alterations and functional changes of interhepatocellular junctions induced by bile duct ligation. Cell Tissue Res 182: 299, 1977

    Article  PubMed  CAS  Google Scholar 

  47. Ma MJ, et al: Cytopempsis of horseradish peroxidase in the hepatocyte. J Histochem Cytochem 22: 160, 1974

    PubMed  CAS  Google Scholar 

  48. Machen TE, et al: Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol 54: 302, 1972

    Article  PubMed  CAS  Google Scholar 

  49. Elias E, Boyer JL: Taurodehydrocholate choleresis increases low molecular weight proteins in bile and the penetration of ionic lanthanum into the bile canalicular tight junctions’ in the rat. Clin Res 26: 217A, 1978

    Google Scholar 

  50. Schatzki PF: Bile canaliculus and space of Disse. Electron microscopic relationships as delineated by lanthanum. Lab Invest 20: 87, 1969

    PubMed  CAS  Google Scholar 

  51. Boyer JL: Canalicular bile formation in the isolated perfused rat liver. Am J Physiol 221: 1156, 1971

    PubMed  CAS  Google Scholar 

  52. Emmelot CC, et al: Studies on plasma membranes. I. Chemical composition and enzyme content of plasma membranes isolated from rat liver. Biochim Biophys Acta 90: 126, 1964

    PubMed  CAS  Google Scholar 

  53. Graf J, et al: Choleretic effects of ouabain and ethacrynic acid in isolated perfused rat liver. Qaunyn Schmiedebergo Arch Exp Path Pharmakol 272: 230, 1972

    Article  CAS  Google Scholar 

  54. Blitzer BL, Boyer JL: Cytochemical localization of Na+, K+ -ATPase in rat hepatocytes. Gastroenterology 74: 1169A, 1978

    Google Scholar 

  55. Latham PS, Kashgarian M: The ultrastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membranes. Gastroenterology 76: 988, 1979

    PubMed  CAS  Google Scholar 

  56. Ernst SA: Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium by the ultrastructural localization of ouabain-sensitive potassium depedent phosphatase activity in the avian salt gland. J Histochem Cytochem 20: 13, 1972

    PubMed  CAS  Google Scholar 

  57. Yousef IM: Location of Na++ K+ ATP ase in liver membranes. Gastroenterology 77: 606, 1979

    PubMed  CAS  Google Scholar 

  58. Kakis G, Yousef IM: Pathogenesis of lithocholate and taurolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology 75: 595, 1978

    PubMed  CAS  Google Scholar 

  59. Simon FR, et al: Stimulation of hepatic sodium potassium adenosine triphosphatase activity by phenobarbital. J Clin Invest 59: 849, 1977

    PubMed  CAS  Google Scholar 

  60. Wannagat FJ, et al: Bile acid induced increase in bile acid-independent flow and plasma membrane Na++K+ ATPase. J Clin Invest 61: 297, 1978

    PubMed  CAS  Google Scholar 

  61. Gabbiani G: Cytoskeleton in normal and pathologic processes, in “Cell Physiopathology, Basel, S. Karger, 1979

  62. Goldman R, et al: “Cell Motility” Cold Spring Harbor Publ. (3 volumes), 1976

  63. Kamiya N: Molecular basis of cell mitoligy. Introductory remarks, in “International cell biology”, edited by Brinkley and Porter, New York, The Rockefeller University Press, 1978, p. 361

    Google Scholar 

  64. Nicolson GL: Transmembrane control of the receptors on normal and tumour cells. Biochim Biophys Acta 458: 1, 1976

    PubMed  CAS  Google Scholar 

  65. Franke WW, et al: Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci 75: 5034, 1978

    Article  PubMed  CAS  Google Scholar 

  66. Gilbert D: 10nm filaments. Nature 272: 577, 1978

    Article  Google Scholar 

  67. Schlegel R, et al: Immunohistochemical localization of Keratin in normal human tissue. Lab Invest 42: 91, 1980

    PubMed  Google Scholar 

  68. Satir P: How cilia move. Sci Amer 231: 44, 1974

    PubMed  CAS  Google Scholar 

  69. Pollard T, Weihing RR: Actin and myosin and cell movement. Crit Rev Biochem 2: 1, 1974

    Article  CAS  Google Scholar 

  70. Stossel TP, Hartwig JH: Interactions between actin, myosin and a new actin-binding protein. J Biol Chem 250: 5706, 1975

    PubMed  CAS  Google Scholar 

  71. Franke WW, et al: Ultrastructural, biochemical, and immunologie characterization of Mallory Bodies in livers of Griseofulvin-treated mice. Fimbriated rods of filament containing prekeratin-like polypeptides. Lab Invest 40: 207, 1979

    PubMed  CAS  Google Scholar 

  72. Reaven EP, Reaven GM: Evidence that microtubules play a permissive role in hepatocyte very low density lipoprotein secretion. J Cell Biol 84: 28, 1980

    Article  PubMed  CAS  Google Scholar 

  73. Baraona E, et al: Pathogenesis of alcohol induced accummulation of protein in the liver. J Clin Invest 60: 546, 1977

    PubMed  CAS  Google Scholar 

  74. Matsuda Y, et al: Effects of ethanol on liver microtubules and Golgi apparatus. Possible role in altered hepatic secretion of plasma proteins. Lab Invest 41: 455, 1979

    PubMed  CAS  Google Scholar 

  75. French SW, Davies PK: Ultrastructural localization of actin-like filaments in rat hepatocytes. Gastroenterology 68: 765, 1975

    PubMed  CAS  Google Scholar 

  76. Holborow EJ, et al: Demonstration of smooth muscle contractile protein antigens in liver and epithelial cells. Ann NY Acad Sci 254: 489, 1975

    Article  PubMed  CAS  Google Scholar 

  77. Gabbiani G, et al: Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes. Lab Invest 33: 562, 1975

    PubMed  CAS  Google Scholar 

  78. Phillips MJ, et al: Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 69: 48, 1975

    PubMed  CAS  Google Scholar 

  79. Wieland T, et al: Interaction of phalloidin with actin, in “Pathogenesis and mechanisms of liver cell necrosis: edited by Keppler, D. Lancaster, MTP Press Ltd. 1975, p. 193

  80. Phillips MJ: Recent advances in the electron microscopic evaluation of the liver in cholestasis, in “Neonatal hepatitis and biliary atresia” edited by Javitt, N. Bethesda, Fogarty Institute Press, 1979

    Google Scholar 

  81. Weber AM, et al: Neonatal intrahepatic cholestasis in North American Indians. A new entity? Gastroenterology 77: A46, 1979

    Google Scholar 

  82. Phillips MJ, et al: Evidence for microfilament involvement in norethandrolone-induced intrahepatic cholestasis. Amer J Pathol 93: 729, 1978

    CAS  Google Scholar 

  83. Spudich JA: Effects of cytochalason B on actin filaments. Cold Spring Harbor Symp. Quant. Biol., Cold Spring Harbor Laboratory, Cold Spring Harbor, Vol. 37, 1973, p. 585

    CAS  Google Scholar 

  84. Oda M, et al: Effects of cytochalasin B on membranes in a cell free system. J Cell Biol 1980. (submitted)

  85. Yousef IM, et al: Role of myosin-like protein in the cytoskeleton proteins of the hepatocyte. Gastroenterology 1980. (in press)

  86. Oshio C, Phillips MJ: Unreported observations, 1980

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, M.J. Mechanisms of cholestasis: a selected review. Gastroenterol Jpn 15, 415–421 (1980). https://doi.org/10.1007/BF02774316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02774316

Keywords

Navigation