Skip to main content
Log in

On the probability of generating prosoluble groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

LetF be the free prosoluble group of rankd. We determine the minimum integerk such that the probability of generatingF withk elements is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Dixon,The Fitting subgroup of a linear solvable group, Journal of the Australian Mathematical Society7 (1967), 417–424.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. D. Dixon and B. Mortimer,Permutation Groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  3. W. Gaschütz,Die Eulersche Funktion endlicher auflsbarer Gruppen, Illinois Journal of Mathematics3 (1959), 469–476.

    MATH  MathSciNet  Google Scholar 

  4. F. Gross,Automorphisms of permutational wreath products, Journal of Algebra117 (1988), 472–493.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. M. Kantor and A. Lubotzky,The probability of generating a finite classical group, Geometriae Dedicata36 (1990), 67–87.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Lubotzky and D. Segal,Subgroup Growth, Progress in Mathematics, 212, Birkhäuser Verlag, Basel, 2003.

    MATH  Google Scholar 

  7. A. Lucchini,Generating wreath products, Archiv der Mathematik62 (1994), 481–490.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Mann,Positively finitely generated groups, Forum Mathematicum8 (1996), 429–459.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Mann,A probabilistic Zeta function for arithmetic groups, International Journal of Algebra Computation15 (2005), 1053–1059.

    Article  MATH  Google Scholar 

  10. I. Pak,On probability of generating a finite group, preprint.

  11. I. Pak and S. Bratus,On sampling generating sets of finite groups and product replacement algorithm (extended abstract),Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC), ACM, New York, 1999, pp. 91–96 (electronic).

    Google Scholar 

  12. P. P. Pálfy,A polynomial bound for the orders of primitive solvable groups, Journal of Algebra77 (1982), 127–137.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Pyber,Enumerating finite groups of given order, Annals of Mathematics137 (1993), 203–220.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucchini, A., Menegazzo, F. & Morigi, M. On the probability of generating prosoluble groups. Isr. J. Math. 155, 93–115 (2006). https://doi.org/10.1007/BF02773950

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773950

Keywords

Navigation