Israel Journal of Mathematics

, Volume 154, Issue 1, pp 299–336

Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality

  • Elchanan Mossel
  • Ryan O'Donnell
  • Oded Regev
  • Jeffrey E. Steif
  • Benny Sudakov

DOI: 10.1007/BF02773611

Cite this article as:
Mossel, E., O'Donnell, R., Regev, O. et al. Isr. J. Math. (2006) 154: 299. doi:10.1007/BF02773611


In this paper we studynon-interactive correlation distillation (NICD), a generalization of noise sensitivity previously considered in [5, 31, 39]. We extend the model toNICD on trees. In this model there is a fixed undirected tree with players at some of the nodes. One node is given a uniformly random string and this string is distributed throughout the network, with the edges of the tree acting as independent binary symmetric channels. The goal of the players is to agree on a shared random bit without communicating.

Our new contributions include the following:
  • • In the case of ak-leaf star graph (the model considered in [31]), we resolve the open question of whether the success probability must go to zero ask » ∞. We show that this is indeed the case and provide matching upper and lower bounds on the asymptotically optimal rate (a slowly-decaying polynomial).

  • • In the case of thek-vertex path graph, we show that it is always optimal for all players to use the same 1-bit function.

  • • In the general case we show that all players should use monotone functions. We also show, somewhat surprisingly, that for certain trees it is better if not all players use the same function.

Our techniques include the use of thereverse Bonami-Beckner inequality. Although the usual Bonami-Beckner has been frequently used before, its reverse counterpart seems not to be well known. To demonstrate its strength, we use it to prove a new isoperimetric inequality for the discrete cube and a new result on the mixing of short random walks on the cube. Another tool that we need is a tight bound on the probability that a Markov chain stays inside certain sets; we prove a new theorem generalizing and strengthening previous such bounds [2, 3, 6]. On the probabilistic side, we use the “reflection principle” and the FKG and related inequalities in order to study the problem on general trees.

Copyright information

© The Hebrew University 2006

Authors and Affiliations

  • Elchanan Mossel
    • 1
  • Ryan O'Donnell
    • 2
  • Oded Regev
    • 3
  • Jeffrey E. Steif
    • 4
  • Benny Sudakov
    • 5
  1. 1.Department of StatisticsUniversity of California at BerkeleyBerkeleyUSA
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  3. 3.Department of Computer ScienceTel Aviv UniversityTel AvivIsrael
  4. 4.Department of MathematicsChalmers University of TechnologyGothenburgSweden
  5. 5.Department of MathematicsPrinceton UniveristyPrincetonUSA

Personalised recommendations