Skip to main content
Log in

Lethality of inducible, meristem-localized ectopic β-glucuronidase expression in plants

  • Commentary
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

GUSA fromEscherichia coli, encoded by theuidA gene, has been successfully used as a plant reporter system for more than a decade with no reported deleterious effects. However, when expressed in coordination with a UDP-glucuronosyltransferase isolated from the root cap meristem ofPisum sativum (PsUGT1) at the onset of mitosis, GUSA expression was lethal in pea, alfalfa, andArabidopsis thaliana. These unexpected results indicate that, under some circumstances, using GUSA in plants is incompatible with life and suggest that the cell-specific lethal phenotype might be useful in selecting for genes specifically involved in regulating the G2-M phase of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FCC:

factor controlling cell cycle

GlcA:

glucuronic acid

GUS:

β-glucuronidase

SL:

saccharide lactone

UGT:

UDP-glucuronyltransferase

References

  • Aiken RM and Smucker AJM (1996) Root system regulation of whole plant growth. Annu Rev Phytopathol 34: 325–46.

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW (1975) The root cap. In: Torrey JG and Clarkson DT (eds), The Development and Function of Roots, pp 21–24, Academic Press, London.

    Google Scholar 

  • Brigham LA, Woo, HH, Wen F, and Hawes MC (1998) Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol 118: 1223–31.

    Article  PubMed  CAS  Google Scholar 

  • Clowes FAL (1980) Mitosis in the root cap ofZea mays. New Phytol 85: 79–87.

    Article  Google Scholar 

  • Darwin C (1896) The Power of Movement in Plants. D. Appleton and Company, New York.

    Google Scholar 

  • Foucher F and Kondorosi E (2000) Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43: 773–86.

    Article  PubMed  CAS  Google Scholar 

  • George I, Crop P, and Servais P (2001) Use of beta-D-galactosidase and beta-D-glucuronidase activities for quantitative detection of total and fecal coliforms in waste-water. Can J Microbiol 47: 670–5.

    PubMed  CAS  Google Scholar 

  • Gilissen LJ, Metz PL, Stiekema WJ, and Nap JP (1998) Biosafety ofE. coli GUS in plants. Transgenic Res 7: 157–63.

    Article  PubMed  CAS  Google Scholar 

  • Hansch R, Koprek T, Mendel RR, and Schulze J (1995) An improved protocol for elimination endogenous GUS background in barley. Plant Sci 105: 63–9.

    Article  Google Scholar 

  • Hawes MC, Bengough GA, Cassab G, and Ponce G (2003) Root caps and rhizosphere. J Plant Growth Reg 21: 352–67.

    Article  Google Scholar 

  • Hirschi KD (2003) Insertional mutants: a foundation for assessing gene function. Trends Plant Sci 8: 205–7.

    Article  PubMed  CAS  Google Scholar 

  • Hodal L, Bochardt A, Nielsen JE, Mattsson O, and Okkels FT (1992) Detection, expression and specific elimination of endogenous GUS activity in transgenic and nontransgenic plants. Plant Sci 87: 115–22.

    Article  CAS  Google Scholar 

  • Hu C, Chee PP, Chee KPP, Chesney RH, Zhou JH, Miller PD, and O'brien WT (1990) Intrinsic GUS-like activities in seed plants. Plant Cell Rep 9: 1–5.

    Article  CAS  Google Scholar 

  • Huang PS and Oliff A (2001) Drug-targeting strategies in cancer therapy. Curr Opin Gen Dev 11: 104–10.

    Article  CAS  Google Scholar 

  • Jefferson RA, Burgess SM, and Hirsh D (1986) β-glucuronidase fromEscherichia coli as a gene fusion marker. Proc Natl Acad Sci 83: 8447–51.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405.

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, and Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–7.

    PubMed  CAS  Google Scholar 

  • Jiang and Feldman LJ (2003) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21: 432–40.

    Article  Google Scholar 

  • Kovalchuk I, Kovalchuk O, and Hohn B (2000) Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J 19: 4431–8.

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk I, Kovalchuk O, and Hohn B (2001a) Biomonitoring the genotoxicity of environmental factors with transgenic plants. Trends Plant Sci 6: 306–10.

    Article  PubMed  CAS  Google Scholar 

  • Kovalchuk O, Titov V, Hohn B, and Kovalchuk I (2001b) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nature Biotechnol 19: 568–72.

    Article  CAS  Google Scholar 

  • Legler J, Jonas A, Lahr J, Vethaak AD, Brouwer A, and Murk AJ (2002) Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER-CALUX gene assay. Environ Toxicol Chem 21: 473–9.

    Article  PubMed  CAS  Google Scholar 

  • Levvy GA (1952) Baicalinase, a plant β-glucuronidase. Biochem J 52: 464–9.

    PubMed  CAS  Google Scholar 

  • Lopez de Alda MJ and Barcelo D (2001) Review of analytical methods for determination of estrogens and progestogens in waste waters. Fresenius J Anal Chem 371: 437–47.

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW (1991) Proposed role of drug metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation and neuroendocrine functions. Mol Endocrinol 5: 1203–14.

    Article  PubMed  CAS  Google Scholar 

  • Plegt L and Bino RJ (1989) GUS activity during development of the male gametophyte from transgenic and non-transgenic plants. Mol Gen Genet 216: 321–7.

    Article  CAS  Google Scholar 

  • Sasaki K, Taura F, Shoyama Y, and Morimoto S (2000) Molecular characterization of a novel GUS fromScutellaria baicalensis Georgi. J Biol Chem 275: 27466–72.

    PubMed  CAS  Google Scholar 

  • Schulz M and Weissenbock G (1988) Dynamics of the tissue specific metabolism of luteolin glucuronides in the mesophyll of rye primary leaves. Z Naturforsch 43c: 187–93.

    Google Scholar 

  • Tsugeki R and Fedoroff NV 1999 Genetic ablation of root cap cells in Arabidopsis. Proc Natl Acad Sci USA 96: 12941–6.

    Article  PubMed  CAS  Google Scholar 

  • Wielbo J and Skorupska A (2001) Construction of improved vectors and cassettes containing GusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. J Micro Meth 45: 197–205.

    Article  CAS  Google Scholar 

  • Wilson KJ, Hughes SG, and Jefferson RA (1992) TheEscherichia coli operon: induction and expression of thegus operon inE. coli and the occurrence and use of GUS in other bacteria. In: GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, Inc.

  • Woo HH, Kuleck G, Hirsch AM, and Hawes MC (2002) Flavonoids: signal molecules in plant development. In: Buslig BS and Manthey JA (eds), Flavonoids in Cell Function, Advances in Experimental Medicine and Biology, Vol. 505, pp 51–60, Kluwer Academic/Plenum Publishers, New York, New York.

    Chapter  Google Scholar 

  • Woo HH, Faull K, Hirsch AM, and Hawes MC (2003) Altered life cycle in Arabidopsis plants expressing a UDP-glucuronosyltransferase fromPisum sativum. Plant Physiol 133: 538–48.

    Article  PubMed  CAS  Google Scholar 

  • Woo HH and Hawes MC (1997) Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps ofPisum sativum. Plant Mol Biol 35: 1045–51.

    Article  PubMed  CAS  Google Scholar 

  • Woo HH, Hirsch AM, and Hawes MC (2004) Altered susceptibility to infection bySinorhizobium meliloti andNectria haematococca in alfalfa roots with altered cell cycle. Plant Cell Rep. Plant Cell Rep.

  • Woo HH, Orbach MJ, Hirsch AM, and Hawes MC (1999) Meristem-localized expression of a UDP-glucuronosyltransferase gene is essential for growth and development in pea and alfalfa. Plant Cell 11: 2303–15.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, F., Woo, HH., Hirsch, A.M. et al. Lethality of inducible, meristem-localized ectopic β-glucuronidase expression in plants. Plant Mol Biol Rep 22, 7–14 (2004). https://doi.org/10.1007/BF02773343

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773343

Key words

Navigation