Skip to main content
Log in

Fabrication of 0.5-μm structures by dry electron lithography and anisotropic plasma etching

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A method for the fabrication of submicron (~0.5 μm) structures is presented. It includes the plasma formation of a three-layer mask, electron-beam exposure, plasma development, and anisotropic plasma etching of a resist and silicon oxide. The development in a fluorine-containing plasma forms the negative image of the exposed pattern (a set of parallel strips). The minimum resolution was 0.5 μm at the exposure dose 8 x l0-4C/cm2. The minimum exposure dose at which separate lines are developed was equal to 1 x 10-4 C/cm2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morita, S., Tamano, J., Hattory, S., and Ieda, M., Plasma Polymerized Methyl Methacrylate as an Electron-Beam Resist,J. Appl. Phys., 1980, vol. 51, no. 7, pp. 3938–3941.

    Article  Google Scholar 

  2. Yamada, M., Tamano, J., Yoneda, K., Morita, S., Hattory, S., and Ieda, M., Electron-Beam Vacuum Lithography Using a Plasma Copolymerized MMA-TMT Resist,Jpn. J. Appl. Phys., 1982, vol. 21, no. 5, pp. 768–771.

    Article  Google Scholar 

  3. Tawata, M., Kato, H., Morita, S., and Hattori, S., Totally Dryed Three-Layer Resist Process Using Evaporated Fatty Acid,J. Elecrochem. Soc., 1993, vol. 14b, no. 3, pp. 861–865.

    Article  Google Scholar 

  4. Moreau, W.,Semiconductor Lithography, New York: Plenum, 1988, part 1. Translated under the titleMikrolitografiya, Moscow: Mir, 1990.

    Google Scholar 

  5. Roland, B., Surface Imaging Techniques,Microelectron. Eng., 1991, vol. 13, pp. 11–18.

    Article  Google Scholar 

  6. Monget, C, Fuard, D., and Joubert, O., Optimization of Plasma Polymerized Methylsilane Process for 148 and 193 nra Lithography Applications,Micro and Nanoengineering 98, Lenven, pp. 49–50.

  7. Ogawa, T., Yamaguchi, A., Soga, T., Tachibana, H.,et al., New Dry Surface-Imaging Process for X-ray Lithography,Jpn. J. Appl. Phys., 1994, vol. 33, no. 3R, pp. 1577–1582.

    Article  Google Scholar 

  8. Van Delft, F.C.M., Bilayer Resist Used in E-Beam Lithography for Deep Narrow Structures,Micro and Nanoengineering 98, Lenven, p. 235.

  9. Fujino, T., Maeda, H., Kimura, Y, Horibe, H.,et al., Electron Beam Direct Writing Techniques for the Development of Sub-Quarter-Micron Devices,Jpn. J. Appl. Phys., 1996, vol. 35, no. 12A, part 1, pp. 6320–6327.

    Article  Google Scholar 

  10. Lohau, J., Fridrichowski, S., Dumpich, G., and Wassermann, E.F., Electron-Beam Lithography with Metal Colloids: Direct Writing of Metallic Nanostructures,J. Vac. Sci. Technol., B, 1998, vol. 16, no. 1, pp. 77–79.

    Article  Google Scholar 

  11. Lohau, J., Fridrichowski, S., and Dumpich, G., Electron-Beam Lithography Using a Scanning Transmission Electron Microscope CM12,J. Vac. Sci. Technol., B, 1998, vol. 16, no. 3, pp. 1150–1154.

    Article  Google Scholar 

  12. Morozov, O.V. and Amirov, I.I., SiO2 Film Deposition in a SiH4 + O2 Plasma of Low-Pressure Inductive Discharge,Mikroelektronika, 2000, vol. 29, no. 3, pp. 170–176.

    Google Scholar 

  13. Amirov, I.I., Berdnikov, A.E., and Izyumov, M.O., Etching of Resists in a Reactor with an RF Inductive Plasma Source,Mikroelektronika, 1998, vol. 27, no. 1, pp. 22–27.

    Google Scholar 

  14. Amirov, I.I. and Fedorov, V.A., Anisotropie Submicron Etching of Resists in the Oxygen Plasma of an RF Induction Discharge,Mikroelektronika, 2000, vol. 29, no. 4, p. 308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirov, I.I., Fedorov, V.A. Fabrication of 0.5-μm structures by dry electron lithography and anisotropic plasma etching. Russ Microelectron 29, 311–315 (2000). https://doi.org/10.1007/BF02773282

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773282

Keywords

Navigation