Skip to main content

The essential range of a nonabelian cocycle is not a cohomology invariant


We show by way of examples that the essential range of a nonabelian cocycle is in general not invariant under cocycle cohomology, and differs in general from the essential range of an induced cocycle.

This is a preview of subscription content, access via your institution.


  1. [1]

    H. Araki and J. Woods,A classification of factors, Publications of the Research Institute for Mathematical Sciences, Kyoto University, Series A4 (1968), 51–130.

    MathSciNet  Google Scholar 

  2. [2]

    F. M. Dekking,On transience and recurrence of generalized random walks, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebeite61 (1982), 459–465.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    J. Feldman and C. C. Moore,Ergodic equivalence relations, cohomology, and von Neumann algebras. I, II, Transactions of the American Mathematical Society234 (1977), 289–359.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    W. Krieger,On the Araki-Woods asymptotic ratio set and nonsingular transformations of a measure space, inContribution to Ergodic Theory and Probability, Lecture Notes in Mathematics160, Springer, Berlin-Heidelberg-New York, 1970, pp. 158–177.

    Chapter  Google Scholar 

  5. [5]

    K. Schmidt,Cocycles on Ergodic Transformation Groups, MacMillan, Delhi, 1977.

    MATH  Google Scholar 

  6. [6]

    K. Schmidt,Algebraic ideas in ergodic theory, inRegional Conference Series in Mathematics, Number 76, American Mathematical Society, Providence, Rhode Island, 1990.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. Arnold.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arnold, L., Nguyen, D.C. & Oseledets, V.I. The essential range of a nonabelian cocycle is not a cohomology invariant. Isr. J. Math. 116, 71–76 (2000).

Download citation


  • Proper Subgroup
  • Standard Basis Vector
  • Compact Topological Group
  • Ergodic Transformation
  • Group Homeomorphism