Skip to main content
Log in

Shellability of chessboard complexes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript


The matchings in a complete bipartite graph form a simplicial complex, which in many cases has strong structural properties. We use an equivalent description aschessboard complexes: the complexes of all nontaking rook positions on chessboards of various shapes.

In this paper we construct ‘certificatek-shapes’ Σ(m, n, k) such that if the shapeA contains some Σ(m, n, k), then the (k−1)-skeleton of the chess-board complexδ(A) isvertex decomposable in the sense of Provan & Billera. This covers, in particular, the case of rectangular chessboardsA=[m]×[n], for which Δ(A) is vertex decomposable ifn≥2m−1, and the\(([\frac{{m + n + 1}}{3}] - 1)\)-skeleton is vertex decomposable in general.

The notion of vertex decomposability is a very convenient tool to prove shellability of such combinatorially defined simplicial complexes. We establish a relation between vertex decomposability and the CL-shellability technique (for posets) of Björner & Wachs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. L. J. Billera and J. S. Provan,A decomposition property for simplicial complexes and its relation to diameters and shellings, Ann. NY Acad. Sci.319 (1979), 82–85.

    Article  MathSciNet  Google Scholar 

  2. A. Björner,Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Advances in Math.52 (1984), 173–212.

    Article  MATH  Google Scholar 

  3. A. Björner,Homology and shellability of matroids and geometric lattices, inMatroid Applications (N. White, ed.), Cambridge University Press, 1992, pp. 226–283.

  4. A. Björner,topological Methods, inHandbook of Combinatorics (R. Graham, M. Grötschel and L. Lovász, eds.), North-Holland, Amsterdam, to appear.

  5. A. Björner, personal communication.

  6. A. Björner, L. Lovász, S. T. Vrećica and R. T. Živaljević,Chessboard complexes and matching complexes, J. London Math. Soc., to appear.

  7. A. Björner and M. Wachs,On lexicographically shellable posets, Trans. Amer. Math. Soc.277 (1983), 323–341.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. F. Garst,Cohen-Macaulay Complexes and Group Actions, Ph.D. Thesis, University of Wisconsin-Madison, 1979, 130 pp.

  9. V. Klee and P. Kleinschmidt,The d-step conjecture and its relatives, Math. Operations Research12 (1987), 718–755.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Lovász and M. D. Plummer,Matching Theory, Akadémiai Kiadó, Budapest, and North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  11. J. S. Provan and L. J. Billera,Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Operations Research5 (1980), 576–594.

    MATH  MathSciNet  Google Scholar 

  12. K. S. Sarkaria,A generalized van Kampen-Flores theorem, Proc. Amer. Math. Soc.111 (1991), 559–565.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. T. Vrećica and R. T. Živaljević,The colored Tverberg’s problem and complexes of injective functions, J. Combinatorial Theory, Ser. A61 (1992), 309–318.

    Article  MATH  Google Scholar 

  14. M. L. Wachs and J. W. Walker,On geometric semilattices, Order2 (1986), 367–385.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, G.M. Shellability of chessboard complexes. Israel J. Math. 87, 97–110 (1994).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: