Skip to main content
Log in

Mappings of group shifts

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A group shift is a proper closed shift-invariant subgroup ofG 2 whereG is a finite group. We consider a class of group shifts in whichG is a finite field and show that mixing is a necessary and sufficient condition on such a group shift for all codes from it into another group shift to be affine and all codes from another group shift into it to be affine. As a corollary, it will follow forG=ℤ p that two mixing group shifts are topologically conjugate if and only if they are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Boyle and D. Lind,Expansive subdynamics, Transactions of the American Mathematical Society349 (1997), 55–102.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. M. Coven, G. A. Hedlund and F. Rhodes,The commuting block maps problem, Transactions of the American Mathematical Society249 (1979), 113–137.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Hall, Marshall,The Theory of Groups, The Macmillan Co., New York, 1959.

    Google Scholar 

  4. G. A. Hedlund,Endomorphisms and automorphisms of the shift dynamical system, Mathematical Systems Theory3 (1969), 320–375.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. H. Kim and F. W. Roush,On the structure of inert automorphisms of subshifts, Pure Mathematics and Applications. Series B2 (1991), 3–22.

    MATH  MathSciNet  Google Scholar 

  6. B. Kitchens and K. Schmidt,Automorphisms of compact groups, Ergodic Theory and Dynamical Systems9 (1989), 691–735.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Kitchens and K. Schmidt,Markov subgroups of (ℤ/2ℤ 2), inSymbolic Dynamics and its Applications (P. Walters, ed.), American Mathematical Society, Providence, RI, 1992, pp. 265–283.

    Google Scholar 

  8. B. Kitchens and K. Schmidt,Isomorphism rigidity of irreducible algebraic ℤ d actions, Technical report, University of Vienna, 1999.

  9. F. Ledrappier,Un champ markovien peut être d’entropie nulle et mélangeant, Comptes Rendus de l’Académie des Sciences, Paris, Série A287 (1978), 561–562.

    MATH  MathSciNet  Google Scholar 

  10. D. Lind and B. Marcus,Symbolic Dynamics and Coding, Cambridge University Press, 1995.

  11. D. L. M. Boyle and D. Rudolph,The automorphism group of a shift of finite type, Transactions of the American Mathematical Society306 (1988), 71–114.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Ratner,Rigidity of horocycle flows, Annals of Mathematics115 (1982), 597–614.

    Article  MathSciNet  Google Scholar 

  13. R. M. Robinson,Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae12 (1971), 177–209.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Schmidt,Dynamical Systems of Algebraic Origin, Birkhäuser, Boston, 1995.

    MATH  Google Scholar 

  15. T. B. Ward,Automorphisms of ℤ d -subshifts of finite type, Indagationes Mathematicae (N.S.)5 (1994), 495–504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony N. Quas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quas, A.N., Trow, P.B. Mappings of group shifts. Isr. J. Math. 124, 333–365 (2001). https://doi.org/10.1007/BF02772629

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02772629

Keywords

Navigation