Skip to main content
Log in

DNA isolation from forest soil suitable for PCR assays of fungal and plant rRNA genes

  • Protocols
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

This protocol for DNA isolation from forest soil samples is advantageous because it uses only one liquid transference step and can process several samples with minimal time and equipment. The use of benzyl chloride early in the extraction protocol increases DNA yield and purity. The obtained DNA is useful for PCR amplification of nuclear and mitochondrial ribosomal related sequences from fungi and ribosomal DNA from plant chloroplasts. Isolated DNA can be used either undiluted or at low dilutions in PCR assays. A final glassmilk treatment of isolated DNA is useful to recover high molecular weight DNA fractions from agarose gel. DNA losses during glassmilk treatment can generate negative PCR results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

benzyl chloride

ITS:

internal transcribed spacer of nuclear ribosomal unit

References

  • Bahnweg G, Schulze S, Möller EM, Rosenbrock H, Langebartels C, and Sandermann Jr H (1998) DNA isolation from recalcitrant materials such as tree roots, bark, and forest soil for the detection of fungal pathogens by polymerase chain reaction. Anal Biochem 262: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Brunner i, Brodbeck S, Büchler U, and Sperisen C (2001) Molecular identification of fine roots of trees from the Alps: reliable and fast DNA extraction and PCR-RFLP analyses of plastid DNA. Mol Ecol 10: 2069–2078.

    Article  Google Scholar 

  • Bruns TD and Horton TR (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10: 1855–1872.

    Article  PubMed  Google Scholar 

  • Classen VP, Zasoski RJ, and Tyler BM (1996) A method for direct soil extraction and PCR amplification of endomycorrizal fungal DNA. Mycorrhiza 6: 447–450.

    Article  Google Scholar 

  • Ernst D, Kiefer E, Drouet A, and Sandermann H Jr. (1996) A simple method of DNA extraction from soil for detection of composite transgenic plants by PCR. Plant Mol Biol Rep 14: 143–148.

    Article  Google Scholar 

  • Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, and Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soil samples. Appl Environ Microbiol 65: 5409–5420.

    PubMed  CAS  Google Scholar 

  • Jackson CR, Harper JP, Willoughby D, Roden EE, and Churchill PF (1997) A simple efficient method for the separation of humic substances and DNA from environmental samples. Appl Environ Microbiol 63: 4993–4995.

    PubMed  CAS  Google Scholar 

  • Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, and Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64: 2463–2472.

    PubMed  CAS  Google Scholar 

  • Leff LG, McArthur JV, and Shimkets LJ (1995) Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61: 1141–1143.

    PubMed  CAS  Google Scholar 

  • Liesack W, Weyland H, and Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21: 191–198.

    Article  CAS  Google Scholar 

  • Linder CR, Moore AL, and Jackson RB (2000) A universal molecular method for identifying underground plant parts to species. Mol Ecol 9: 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  • Malik M, Kain J, Pettigrew C, and Ogram A (1994) Purification and molecular analysis of microbial DNA from compost. J Microbiol Methods 20: 183–196.

    Article  CAS  Google Scholar 

  • McGregor DP, Forster S, Steven J, Adair J, Leary SEC, Leslie DL, Harris WJ, and Titball RW (1996) Simultaneous detection of microorganisms in soil suspension based on PCR amplification of bacterial 16S rRNA fragments. BioTechniques 21: 463–470.

    PubMed  CAS  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, and Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and semines samples. Appl Environ Microbiol 65: 4715–4724.

    PubMed  CAS  Google Scholar 

  • Moré MI, Herrick JB, Silva MC, Ghiorse WC, and Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60: 1572–1580.

    PubMed  Google Scholar 

  • Pääbo S, Irwin DM, and Wilson AC (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265: 4718–4721.

    PubMed  Google Scholar 

  • Porteous LA and Armstrong JL (1991) Recovery of bulk DNA from soil by a rapid, small-scale extraction method. Curr Microbiol 22: 345–348.

    Article  CAS  Google Scholar 

  • Porteous LA and Armstrong JL (1993) A simple mini-method to extract DNA directly from soil for use with polymerase chain reaction amplification. Curr Microbiol 27: 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Raina K and Chandlee JM (1996) Recovery of genomic DNA from a fungus (Sclerotinia homoeocarpa) with high polysaccharide content. BioTechniques 21: 1030–1032.

    PubMed  CAS  Google Scholar 

  • Sambrook J and Russell DW (2001) Molecular Cloning: A Laboratory Manual. 3th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Tsai YL and Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57: 1070–1074.

    PubMed  CAS  Google Scholar 

  • Tsai YL and Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances sediments for polymerase chain reaction. Appl Environ Microbiol 58: 2292–2295.

    PubMed  CAS  Google Scholar 

  • Tsumura Y, Yoshimura K, Tomaru N, and Ohba K (1995) Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theor Appl Genet 91: 1222–1236.

    Article  CAS  Google Scholar 

  • Volossiouk T, Robb EJ, and Nazzar RN (1995) Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61: 3972–3976.

    PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, and Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, and White TJ (eds), PCR Protocols: A guide to Methods and Applications, pp 315–322. Academic Press, San Diego California, USA.

    Google Scholar 

  • Yeates C, Gillings MR, Davison AD, Altavilla N, and Veal DA (1998) Methods for microbial DNA extraction from soil for PCR amplification.http://www.biologicalprocedures.com. Biological Procedures Online 1: 40–47.

    Article  PubMed  Google Scholar 

  • Young CC, Burghoff RL, Kiem LG, Minak-Bernero V, Lute JR, and Hinton SM (1993) Polyvinilpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplificable DNA from soils. Appl Environ Microbiol 59: 1972–1974.

    PubMed  CAS  Google Scholar 

  • Zhou JM, Bruns A, and Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316–322.

    PubMed  CAS  Google Scholar 

  • Zhu H, Qu F, and Zhu L (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21: 5279–5280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Marrufo, G., Soledad, M., Vázquez-Garciduenas et al. DNA isolation from forest soil suitable for PCR assays of fungal and plant rRNA genes. Plant Mol Biol Rep 20, 379–390 (2002). https://doi.org/10.1007/BF02772125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02772125

Key words

Navigation