Skip to main content
Log in

Complexes of graph homomorphisms

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Hom(G, H) is a polyhedral complex defined for any two undirected graphsG andH. This construction was introduced by Lovász to give lower bounds for chromatic numbers of graphs. In this paper we initiate the study of the topological properties of this class of complexes.

We prove that Hom(K m, Kn) is homotopy equivalent to a wedge of (nm)-dimensional spheres, and provide an enumeration formula for the number of the spheres. As a corollary we prove that if for some graphG, and integersm≥2 andk≥−1, we have ϖ k1 (Hom(K m, G))≠0, thenχ(G)≥k+m; here ℤ2-action is induced by the swapping of two vertices inK m, and ϖ1 is the first Stiefel-Whitney class corresponding to this action.

Furthermore, we prove that a fold in the first argument of Hom(G, H) induces a homotopy equivalence. It then follows that Hom(F, K n) is homotopy equivalent to a direct product of (n−2)-dimensional spheres, while Hom(F, K n) is homotopy equivalent to a wedge of spheres, whereF is an arbitrary forest andF is its complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, P. Frankl and L. Lovász,The chromatic number of Kneser hypergraphs, Transactions of the American Mathematical Society298 (1986), 359–370.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Babson,A combinatorial flag space, Ph.D. Thesis, MIT, 1993.

  3. E. Babson, A. Björner, S. Linusson, J. Shareshian and V. Welker,Complexes of not i-connected graphs, Topology38 (1999), 271–299.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Babson and D. N. Kozlov,Topological obstructions to graph colorings, Electronic Research Announcements of the American Mathematical Society9 (2003), 61–68.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Babson and D. N. Kozlov,Proof of the Lovász Conjecture, preprint, 40 pages, 2004.arXiv:math.C0/0402395

  6. I. Bárány, S. B. Shlosman and A. Szucs,On a topological generalization of a theorem of Tverberg, Journal of the London Mathematical Society (2)23 (1981), 158–164.

    Article  MATH  Google Scholar 

  7. A. Björner,Topological Methods, inHandbook of Combinatorics (R. Graham, M. Grötschel and L. Lovász, eds.), Elsevier, Amsterdam, 1995, pp. 1819–1872.

    Google Scholar 

  8. G. Bredon,Topology and Geometry, Corrected third printing of the 1993 original, Graduate Texts in Mathematics,139, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  9. M. R. Bridson and A. Haefliger,Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]319, Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  10. P. Csorba, personal communication, 2003.

  11. P. Csorba and F. Lutz, personal communication, 2004.

  12. S. Lj. Čukić and D. N. Kozlov,Complexes of graph homomorphisms between cycles, 15 pages, preprint 2004.arXiv:math.C0/0408015

  13. S. Lj. Čukić and D. N. Kozlov,Higher connectivity of graph coloring complexes, International Mathematics Research Notices25 (2005), 1543–1562.

    Google Scholar 

  14. R. Forman,Morse theory for cell complexes, Advances in Mathematics134 (1998), 90–145.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Hoory and N. Linial,A counterexample to a conjecture of Lovász on the χ-coloring complex, 3 pages, preprint 2004.arXiv:math.C0/0405339

  16. M. Kneser,Aufgabe 360, Jahresbericht der Deutscher Mathematiker Vereinigung58 (1955), 27.

    Google Scholar 

  17. D. N. Kozlov,Collapsibility of Δ(Π n )/S n and some related CW complexes, Proceedings of the American Mathematical Society128 (2000), 2253–2259.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. N. Kozlov,Rational homology of spaces of complex monic polynomials with multiple roots, Mathematika49 (2002), 77–91.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. N. Kozlov,A simple proof for folds on both sides in complexes of graph homomorphisms, Proceedings of the American Mathematical Society, to appear.arXiv:math.C0/0408262

  20. D. N. Kozlov,Simple homotopy type of some combinatorially defined complexes, 12 pages, preprint 2005.arXiv:math.AT/0503613

  21. D. N. Kozlov,Chromatic numbers, morphism complexes, and Stiefel-Whitney characteristic classes, inGeometric Combinatorics, IAS/Park City Mathematics Series14, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 2005.

  22. L. Lovász,Kneser’s conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory. Series A25 (1978), 319–324.

    Article  MATH  Google Scholar 

  23. L. Lovász, personal communication, 2001.

  24. J. Matoušek,Using the Borsuk-Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003, xii+196 pp.

    MATH  Google Scholar 

  25. J. Matoušek and G. M. Ziegler,Topological lower bounds for the chromatic number: A hierarchy, Jahresbericht der Deutscher Mathematiker Vereinigung106 (2004), 71–90.

    MATH  Google Scholar 

  26. D. Quillen,Higher algebraic K-theory, I, Lecture Notes in Mathematics341, Springer-Verlag, Berlin, 1973, pp. 77–139.

    Google Scholar 

  27. B. Sturmfels and G. M. Ziegler,Extension spaces of oriented matroids, Discrete and Computational Geometry10 (1993), 23–45.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. tom Dieck,Transformation Groups, de Gruyter Studies in Mathematics, 8, Walter de Gruyter & Co., Berlin, 1987, x+312 pp.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Babson.

Additional information

The second author acknowledges support by the University of Washington, Seattle, the Swiss National Science Foundation Grant PP002-102738/1, the University of Bern, and the Royal Institute of Technology, Stockholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babson, E., Kozlov, D.N. Complexes of graph homomorphisms. Isr. J. Math. 152, 285–312 (2006). https://doi.org/10.1007/BF02771988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771988

Keywords

Navigation