Skip to main content
Log in

Localization and finite simple groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A homomorphism from a groupH to a groupG is a localization if and only if it induces a bijection between Hom(G, G) and Hom(H, G). In this paper we study the equivalence relation that localization induces on the family of finite non-abelian simple groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aschbacher,Finite Group Theory, Cambridge Studies in Advanced Mathematics, 10, Cambridge University Press, Cambridge 1986.

    MATH  Google Scholar 

  2. R. W. Carter,Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Reprint of the 1985 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1993.

    Google Scholar 

  3. A. M. Cohen, M. W. Liebeck, J. Saxl and G. M. Seitz,The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proceedings of the London Mathematical Society (3)64 (1992), 21–48.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. N. Cooperstein,Minimal degree for a permutation representation of a classical group, Israel Journal of Mathematics30 (1978), 213–235.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson,Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985.

    MATH  Google Scholar 

  6. D. Gorenstein, R. Lyons and R. Solomon,The Classification of the Finite Simple Groups, Number 3, Part I, Chapter A,Almost simple K-groups, Mathematical Surveys and Monographs, 40.3, American Mathematical Society, Providence, RI, 1998.

    Google Scholar 

  7. R. M. Guralnick, K. Magaard, J. Saxl and P. H. Tiep,Cross characteristic representations of symplectic and unitary groups, Journal of Algebra257 (2002), 291–347.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Jansen, K. Lux, R. Parker and R. Wilson,An Atlas of Brauer Characters, Appendix 2 by T. Breuer and S. Norton, London Mathematical Society Monographs, New Series, 11, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  9. P. B. Kleidman,The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ +8 (q)and of their automorphism groups, Journal of Algebra110 (1987), 173–242.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Kleidman and M. Liebeck,The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  11. M. W. Liebeck,On the orders of maximal subgroups of the finite classical groups, Proceedings of the London Mathematical Society (3)50 (1985), 426–446.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. W. Liebeck and J. Saxl,On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proceedings of the London Mathematical Society (3)55 (1987), 299–330.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. W. Liebeck, J. Saxl and G. M. Seitz,Subgroups of maximal rank in finite exceptional groups of Lie type, Proceedings of the London Mathematical Society (3)65 (1992), 297–325.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. W. Liebeck and G. M. Seitz,On finite subgroups of exceptional algebraic groups, Journal für die reine und angewandte Mathematik515 (1999), 25–72.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Lübeck,Smallest degrees of representations of exceptional groups of Lie type, Communications in Algebra29 (2001), 2147–2169.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Lübeck,Small degree representations of finite Chevalley groups in defining characteristic, London Mathematical Society Journal of Computational Mathematics4 (2001), 135–169 (electronic).

    MATH  Google Scholar 

  17. G. Malle,The maximal subgroups of 2F4(q 2), Journal of Algebra139 (1991), 52–69.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. H. Mitchell,The subgroups of the quaternary abelian linear group, Transactions of the American Mathematical Society15 (1914), 379–396.

    Article  MathSciNet  Google Scholar 

  19. S. P. Norton and R. A. Wilson,Anatomy of the Monster. II, Proceedings of the London Mathematical Society (3)84 (2002), 581–598.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. L. Rodríguez, J. Scherer and J. Thévenaz,Finite simple groups and localization, Israel Journal of Mathematics131 (2002), 185–202.

    MATH  MathSciNet  Google Scholar 

  21. P. H. Tiep and A. E. Zalesskii,Minimal characters of the finite classical groups, Communications in Algebra24 (1996), 2093–2167.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, C., Saxl, J. Localization and finite simple groups. Isr. J. Math. 153, 285–305 (2006). https://doi.org/10.1007/BF02771787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771787

Keywords

Navigation