Skip to main content
Log in

Zur axiomatischen charakterisierung des steinerpunktes konvexer körper

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

It is shown that the Steiner point is the only point that can be associated additively, homothety-equivariantly and continuously with any convex body in Euclidean spaceE n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. H. Hadwiger,Vorlesungen über Inhalt, Oberflache und Isoperimetrie; Springer-Verlag, 1957.

  2. B. Grünbaum,Convex polytopes, Wiley and Sons, 1967.

  3. G. C. Shephard,A uniqueness theorem for the Steiner point of a convex region, J. London Math. Soc.43 (1968), 439–444

    Article  MATH  MathSciNet  Google Scholar 

  4. G. C. Shephard,Approximation problems for convex polyhedra, Mathematika,11 (1964), 9–18.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. C. Shephard,The Steiner point of a convex polytop, Canad. J. Math.18 (1966), 1294–1300.

    MATH  MathSciNet  Google Scholar 

  6. K. A. Schmitt,Kennzeichnung des Steinerpunktes konvexer Körper, Math. Z.105 (1968), 387–392.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Grünbaum, Briefliche Mitteilung vom 1. März 1969 an den Verfasser.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadwiger, H. Zur axiomatischen charakterisierung des steinerpunktes konvexer körper. Israel J. Math. 7, 168–176 (1969). https://doi.org/10.1007/BF02771664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771664

Keywords

Navigation