Skip to main content
Log in

On steiner points of convex bodies

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Ifs is a mapping from the set of all convex bodies in Euclidean spaceE d toE d which is additive (in the sense of Minkowski), equivariant with respect to proper motions, and continuous, thens(K) is the Steiner point of the convex bodyK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berg,Abstract Steiner points for convex polytopes, (to appear).

  2. W. Blaschke,Über affine Geometrie. IX. Verschiedene Bemerkungen und Aufgaben, Ber. Verh. Sächs. Akad. Leipzig69 (1917), 412–420.

    Google Scholar 

  3. T. Bonnesen and W. Fenchel,Theorie der konvexen Körper, Springer, Berlin, 1934.

    MATH  Google Scholar 

  4. R. R. Coifman and G. Weiss,Representations of compact groups and spherical harmonics, Enseignement Math.14 (1968), 121–173.

    MATH  MathSciNet  Google Scholar 

  5. H. Flanders,The Steiner point of closed hypersurfaces, Mathematika,13 (1966), 181–188.

    MathSciNet  Google Scholar 

  6. B. Grünbaum,Measures of symmetry for convex sets, Proc. Symposia Pure Math., Vol. VII, Convexity. Amer. Math. Soc., Providence, 233–270, 1963.

    Google Scholar 

  7. B. Grünbaum,Convex polytopes, John Wiley and Sons, London-New York-Sydney, 1967.

    MATH  Google Scholar 

  8. H. Hadwiger,Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper, Israel J. Math.7 (1969), 168–176.

    Article  MathSciNet  Google Scholar 

  9. H. Hadwiger,Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper; Berichtigung und Nachtrag, Israel J. Math. (to appear).

  10. W. Meyer,A uniqueness property of the Steiner point, Pacific J. Math. (to appear).

  11. C. Müller,Spherical harmonics, Lecture Notes in Math.17, Springer, Berlin-Heidelberg-New York, 1966.

    MATH  Google Scholar 

  12. G. T. Sallee,A valuation property of Steiner points, Mathematika13 (1966), 76–82.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. A. Schmitt,Kennzeichnung des Steinerpunktes konvexer Körper, Math. Z.105 (1968), 387–392.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Schneider,Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl.26 (1969), 381–384.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. C. Shephard,The Steiner point of a convex polytope, Canad. J. Math.18 (1966), 1294–1300.

    MATH  MathSciNet  Google Scholar 

  16. G. C. Shephard,A uniqueness theorem for the Steiner point of a convex region, J. London Math. Soc.43 (1968), 439–444.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, R. On steiner points of convex bodies. Israel J. Math. 9, 241–249 (1971). https://doi.org/10.1007/BF02771589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771589

Keywords

Navigation