Israel Journal of Mathematics

, Volume 10, Issue 2, pp 224–233 | Cite as

Every two elementarily equivalent models have isomorphic ultrapowers

  • Saharon Shelah


We prove (without G.C.H.) that every two elementarily equivalent models have isomorphic ultrapowers, and some related results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Chang and H. J. Keisler,Model theory, to appear.Google Scholar
  2. 1a.
    Engelking and Karlowicz,Some theorems of set theory and their topological consequences, Fund. Math.57 (1965), 275–285.MATHMathSciNetGoogle Scholar
  3. 2.
    T. Frayne, A. Morel and D. Scott,Reduced direct products, Fund. Math.51 (1962), 195–228.MathSciNetGoogle Scholar
  4. 3.
    F. Galvin,Horn sentences, Annals Math. Logic,1 (1970), 389–422.MATHCrossRefMathSciNetGoogle Scholar
  5. 4.
    J. Los,Quelque remarques, théorèmes et problèmes sur les classes définissable d’algèbres, Mathematical interpretations of formal systems, 98–113, North Holland Publ. Co., Amsterdam, 1955.Google Scholar
  6. 5.
    H. J. Keisler,Reduced products and Horn classes, Trans. Amer. Math. Soc.,117 (1965), 307–328.MATHCrossRefMathSciNetGoogle Scholar
  7. 6.
    H. J. Keisler,Ultraproducts and elementary classes, Ph. D. thesis, Univ. of Calif. Berkeley California, 1961. See also Kon, Nederl. Akad. Wetensch. Proc. Ser. A64 (1961), 477–495. [Indag. Math. 23].Google Scholar
  8. 7.
    H. J. Keisler,Good ideals in field of sets, Annals of Math.79 (1964), 338–359.CrossRefMathSciNetGoogle Scholar
  9. 8.
    H. J. Keisler,Ultraproducts and saturated models, Koninkl. Nederl. Akad. Wetensch., Proc. Ser. A67 and Indag. Math.26 (1964), 178–186.MathSciNetGoogle Scholar
  10. 9.
    H. J. Keisler,A survey of ultraproducts, Proceedings of the 1964 International Congress for logic, methodology and philosophy of science, held in Jerusalem 1964, Bar-Hillel (ed.), North-Holland Publ. Co. Amsterdam, pp. 112–126.Google Scholar
  11. 10.
    H. J. Keisler,Limit ultrapowers, Trans. Amer. Math. Soc.107 (1963), 382–408.MATHCrossRefMathSciNetGoogle Scholar
  12. 11.
    S. Kochen,Ultraproducts in the theory of models, Annals of Math. (2)74 (1961), 221–261.CrossRefMathSciNetGoogle Scholar
  13. 12.
    K. Kunen,Ultrafilters and independent sets, to appear in Trans. Amer. Math. Soc.Google Scholar
  14. 13.
    R. Mansfield,The theory of Boolean ultrapowers, Annals Math. Logic2 (1971), 297–323.MATHCrossRefMathSciNetGoogle Scholar
  15. 14.
    R. Mansfield,Horn classes and reduced direct products,a preprint.Google Scholar
  16. 15.
    M. D. Morley and R. L. Vaught,Homogeneous universal models, Math. Scand.11 (1962), 37–57.MATHMathSciNetGoogle Scholar
  17. 16.
    J. L. Bell and A. B. Slomson,Models and ultraproducts, North-Holland Publ. Co. Amsterdam, 1969.MATHGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1971

Authors and Affiliations

  • Saharon Shelah
    • 1
  1. 1.University of CaliforniaLos Angeles

Personalised recommendations