Skip to main content
Log in

Multi-valued contraction mappings in generalized metric spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript


Several fixed point theorems for multi-valued global and local contraction mappings are proved. These results concerning contractions are then applied to obtain a fixed point theorem for a certain type of single-valued locally expansive mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. S. Banach,Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math.3 (1922), 133–181.

    Google Scholar 

  2. J. B. Diaz and B. Margolis,A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc.,74 (1968), 305–309.

    MATH  MathSciNet  Google Scholar 

  3. M. Edelstein,An extension of Banach’s contraction principle, Proc. Amer. Math. Soc.,12 (1961), 7–10.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. F. K. Jung,On generalized complete metric spaces, Bull. Amer. Math. Soc.,75 (1969), 113–116.

    MATH  MathSciNet  Google Scholar 

  5. W. A. J. Luxemburg,On the convergence of successive approximations in the theory of ordinary differential equations, II, Koninkl. Nederl. Akademie van Wetenschappen, Amsterdam, Proc. Ser.A(5), 61, and Indag. Math. (5), 20 (1958), 540–546.

    Google Scholar 

  6. S. B. Nadler, Jr.,Multi-valued contraction mappings, Notices Amer. Math. Soc.,14 (1967), 930.

    Google Scholar 

  7. S. B. Nadler, Jr.,Multi-valued contraction mappings, Pacific J. Math.,30 (1969), 415–487.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Covitz, H., Nadler, S.B. Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970).

Download citation

  • Received:

  • Issue Date:

  • DOI: