Advertisement

Kinetics and Catalysis

, Volume 41, Issue 2, pp 276–281 | Cite as

Adsorption study of micropore structure of tin dioxide

  • V. Yu. Gavrilov
Article

Abstract

The micropore structure of xerogels of tin dioxide prepared by precipitation is studied by the physical adsorption of N2, O2, and H2 at -195.6°C. The parameters of the microstructure as a whole depend on the adsorbate. The specific surface area of supermicropores measured by the oxygen adsorption exceeds that measured by nitrogen adsorption, and the extent of excess increases linearly with an increase in the supermicropore volume. The samples of tin dioxides have molecular-sieve properties, but they do not contain ultramicropores measurable by the adsorption of molecular hydrogen.

Keywords

Zeolite Adsorption Isotherm Comparative Method Micropore Volume Capillary Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schreyer, D.R., Upchurch, B.T., and Sidney, B.D.,J. Catal., 1991, vol. 130, no. 1, p. 314.CrossRefGoogle Scholar
  2. 2.
    Bond, G.C., Molloy, L.R., and Fuller, M.J.,J. Chem. Soc., Chem. Commun., 1975, no. 19, p. 796.Google Scholar
  3. 3.
    Rautiu, R. and White, D.A.,Solv. Extr. Ion Exch., 1996, vol. 14, no. 3, p. 721.Google Scholar
  4. 4.
    Gavrilov, V.Yu. and Zenkovets, G.A.,Kinet. Katal., 1992, vol. 33, no. 1, p. 183.Google Scholar
  5. 5.
    Ione, K.G.,Polifunktsional’nyi kataliz na tseolitakh (Multifunctional Catalysis over Zeolites), Novosibirsk: Nauka, 1982.Google Scholar
  6. 6.
    Gavrilov, V.Yu. and Zenkovets, G.A.,React. Kinet. Catal. Lett., 1998, vol. 64, no. 1, p. 79.CrossRefGoogle Scholar
  7. 7.
    Karnaukhov, A.P., Fenelonov, V.B., and Gavrilov, V.Yu.,Pure Appl. Chem., 1989, vol. 61, no. 11, p. 1913.CrossRefGoogle Scholar
  8. 8.
    Gavrilov, V.Yu.,Kinet. Katal., 1994, vol. 35, no. 3, p. 435.Google Scholar
  9. 9.
    Gavrilov, V.Yu.,Kinet. Katal., 1995, vol. 36, no. 4, p. 631.Google Scholar
  10. 10.
    Gavrilov, V.Yu.,Kinet. Katal., 1995, vol. 36, no. 5, p. 787.Google Scholar
  11. 11.
    Dubinin, M.M., Nikolaev, K.M., and Polyakov, N.S.,Kinetika i dinamika fizicheskoi adsorbtsii (Kinetics and Dynamics of Physical Adsorption), Moscow: Nauka, 1973, p. 26.Google Scholar
  12. 12.
    Breck, D.W.,Zeolite Molecular Sieves: Structure, Chemistry, and Use, New York: Wiley, 1974.Google Scholar
  13. 13.
    Gregg, S.J. and Sing, K.S.W.,Adsorption, Surface Areas, and Porosity, New York: Academic, 1982.Google Scholar
  14. 14.
    Fasman, A.B. and Usenov, B.Zh.,React. Kinet. Catal. Lett., 1978, vol. 9, no. 1, p. 85.CrossRefGoogle Scholar
  15. 15.
    Usenov, B.Zh.,Issledovanie adsorbtsionnykh protsessov i adsorbentov (Adsorption Processes and Adsorbents), Dubinin, M.M., Ed., Tashkent: Fan, 1979, p. 134.Google Scholar
  16. 16.
    Zagrafskaya, R.V., Karnaukhov, A.P., and Fenelonov, V.B.,Kinet. Katal., 1976, vol. 17, no. 4, p. 730.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. Yu. Gavrilov
    • 1
  1. 1.Boreskov Institute of CatalysisSiberian Division of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations