Kinetics and Catalysis

, Volume 41, Issue 2, pp 201–210 | Cite as

Cyclohexane oxidation catalyzed by variable-valence metal compounds in the presence of propionic aldehyde

  • M. T. Lisovska
  • V. I. Timokhin
  • A. P. Pokutsa
  • V. I. Kopylets


The effect of propionic aldehyde additives on the kinetics and mechanism of cyclohexane oxidation by molecular oxygen catalyzed by variable-valence metal salts is studied. The effect of the catalyst metal (M) on the rate of oxygen consumption, yield, and ratio of reaction products (cyclohexanol, cyclohexanone, cyclohexyl hydroperoxide (CHHP), and propionic acid and peracid) is studied. The catalytic functions of the variable-valence metal salts are determined by their ability to influence the rate of the homolysis of the O–O bonds of peroxide compounds, which correlates with the redox potential of the metal ion for most of the catalysts studied. The fact that other salts of variable-valence metals do not fit this correlation is due to the multifunctional action of catalysts involved in chain initiation, termination, and degenerate branching. The main role of aldehyde in the process under consideration is to promote oxidation. According to the quantum-chemical studies, the catalyst cation largely determines both the structure of the [Mn+-CHHP] transition complex and the rates of competitive homolysis and heterolysis of cyclohexyl hydroperoxide.


Target Product Cyclohexanone Cyclohexanol Cyclohexyl Homolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sheldon, R.A. and Kochi, J.K.,Metal-Catalyzed Oxidations of Organic Compounds, New York: Academic, 1981.Google Scholar
  2. 2.
    Hill, C.L.,Activation and Functionalization of Alkanes, New York: Wiley, 1989.Google Scholar
  3. 3.
    Selective Hydrocarbon Oxidation and Functionalization, Davis, J.A., Watson, P.L., and Grenberg, A., Eds., New York: VCH, 1990.Google Scholar
  4. 4.
    Meunier, B.,Chem. Rev., 1992, vol. 92, p. 1411.CrossRefGoogle Scholar
  5. 5.
    Ellis, P.E., Jr. and Lyons, J.E.,Coord. Chem. Rev., 1990, vol. 105, p. 181.CrossRefGoogle Scholar
  6. 6.
    US Patent 367 188.Google Scholar
  7. 7.
    Pokutsa, A.P.,Cand. Sci. (Chem.) Dissertation, Lvov: Lvov Polytechnic Institute, 1990.Google Scholar
  8. 8.
    Solyanikov, V.M.,Doctoral (Chem.) Dissertation, Chernogolovka: Institute of Chemical Physics, 1985.Google Scholar
  9. 9.
    Parshall, G.W. and Ittel, S.D.,Homogenous Catalysis, New York: Wiley, 1992, Ch. 10.Google Scholar
  10. 10.
    Kucher, R.V., Pokutsa, A.P., and Timokhin, V.I.,Dokl. Akad. Nauk SSSR, 1990, vol. 310, no. 3, p. 642.Google Scholar
  11. 11.
    Kucher, R.V., Pokutsa, A.P., and Timokhin, V.I.,Kinet. Ratal., 1990, vol. 31, no. 5, p. 1141.Google Scholar
  12. 12.
    USSR Inventor’s Certificate no. 1659391.Google Scholar
  13. 13.
    Timokhin, V., Lisovska, M., Zaborovskiy, A., et al.,12th Conf. on Physical Organic Chemistry, Padova, 1994, p. 261.Google Scholar
  14. 14.
    Lisovska, M., Timokhin, V., and Pocutsa, A.,Third Eur. Congr. on Catalysis “EuropaCat-3”, Krakow, 1997, vol. 1, p. 195.Google Scholar
  15. 15.
    Murahashi, S.-I., Oda, Y., and Naota, T.,J. Am. Chem. Soc., 1992, vol. 114, p. 7913.CrossRefGoogle Scholar
  16. 16.
    Murahashi, S.-I., Oda, Y., Naota, T., et al.,J. Chem. Soc., Chem. Commun., 1993, p. 139.Google Scholar
  17. 17.
    Murahashi, S.-I. and Naota, T.,Bull. Chem. Soc. Jpn., 1996, vol. 69, p. 1805.CrossRefGoogle Scholar
  18. 18.
    Punniyamurthy, T., Bhatia, B., Reddy, M.M., et al.,Tetrahedron, 1997, vol. 53, no. 22, p. 7641.CrossRefGoogle Scholar
  19. 19.
    Mandai, A.K. and Igbal, J.,Tetrahedron, 1997, vol. 53, no. 22, p. 7641.CrossRefGoogle Scholar
  20. 20.
    Battioni, P., Iwanejko, R., Mansuy, D., et al.,J. Mol. Catal. A: Chem., 1996, vol. 109, no. 1, p. 91.CrossRefGoogle Scholar
  21. 21.
    Einhorn, C., Einhorn, J., Marcadal, C., et al.,J. Chem. Soc., Chem. Commun., 1997, p. 447.Google Scholar
  22. 22.
    Bravo, A., Bjorsvik, H.-R., Fontana, F., et al.,J. Org. Chem., 1996, vol. 61, no. 26, p. 9409.CrossRefGoogle Scholar
  23. 23.
    Tsepalov, V.F.,Zavod. Lab., 1964, no. 1, p. 111.Google Scholar
  24. 24.
    Pokutsa, A.P., Timokhin, V.I., and Suprun, V.Ya.,Zh. Anal. Khim., 1989, vol. 44, no. 3, p. 570.Google Scholar
  25. 25.
    Antonovskii, V.L. and Buzlanova, M.M.,Analiticheskaya khimiya organicheskikh peroksidnykh soedinenii (Analytical Chemistry of Organic Peroxide Compounds), Moscow: Khimiya, 1978, p. 309.Google Scholar
  26. 26.
    Chernyak, B.I. and Andrianova, L.A.,Zh. Org. Khim., 1975, vol. 11, no. 9, p. 1800.Google Scholar
  27. 27.
    Timokhin, V.I.,Doctoral (Chem.) Dissertation, Lvov: Lvov Polytechnic Institute, 1991.Google Scholar
  28. 28.
    Korcek, S., Cheneir, J.H.B., Howard, J.A., et al.,Can. J. Chem., 1972, vol. 50, no. 14, p. 285.CrossRefGoogle Scholar
  29. 29.
    Handbook of Chemistry and Physics, Boca Raton, FL: CRC, 1987/1988, 68th ed., p. 178.Google Scholar
  30. 30.
    Paronikyan, D.G., Oganesyan, Em.A., Vardanyan, I.A., et al.,Khim. Fiz., 1982, no. 10, p. 1357.Google Scholar
  31. 31.
    Semenchenko, A.E., Solyanikov, V.M., and Denisov, E.T.,Neftekhimiya, 1971, vol. 11, no. 4, p. 555.Google Scholar
  32. 32.
    Garbuzyuk, I.A., Levush, S.S., and Shevchuk, V.N.,Ukr. Khim. Zh., 1976, vol. 42, no. 6, p. 620.Google Scholar
  33. 33.
    Turetskaya, E.A., Skakovskii, E.D., Rykov, S.V.,et al., Dokl. Akad. Nauk BSSR, 1980, vol. 24, no. 1, p. 57.Google Scholar
  34. 34.
    Chateauneuf, J., Lusztyk, J., and Ingold, K.U.,J. Am. Chem. Soc., 1988, vol. 110, no. 9, p. 2886.CrossRefGoogle Scholar
  35. 35.
    Opeida, I.A., Timokhin, V.I., Simonov, M.A.,et al., VINITI, 1983, no. 2356.Google Scholar
  36. 36.
    Marta, F., Boga, E., and Matik, M.,Disc. Faraday Soc., 1968, no. 46, p. 173.Google Scholar
  37. 37.
    Ariko, N.G., Mitskevich, N.I., and Koval’nov, V.D.,Teoriya i praktika zhidkofaznogo okisleniya (Theory and Practice of Liquid-Phase Oxidation), Moscow: Nauka, 1974, p. 147.Google Scholar
  38. 38.
    Bawn, C.E.H. and Jolley, J.E.,Proc. Royal Soc. (London), 1956, vol. 236, p. 297.Google Scholar
  39. 39.
    Druliner, J.D., Hobbs, F.W., and Seidel, W.C.,J. Org. Chem., 1988, vol. 53, no. 3, p. 700.CrossRefGoogle Scholar
  40. 40.
    Bawn, C.E.H., Hobin, T.P., and Raphael, L.,Proc. Royal Soc. (London), 1956, vol. 237, p. 313.Google Scholar
  41. 41.
    Govindardo, M.H. and Gurumurthy, C.V.,J. Appl. Chem. Biotechnol., 1973, vol. 23, p. 465.CrossRefGoogle Scholar
  42. 42.
    Sheredin, V.P. and Denisov, E.T.,Izv. Akad. Nauk SSSR, Ser. Khim., 1967, p. 1428.Google Scholar
  43. 43.
    Matienko, L.I., Goldina, L.A., Skibida, I.P., et al.,hv. Akad. Nauk SSSR, Ser. Khim., 1975, p. 287.Google Scholar
  44. 44.
    Pustarnakova, G.F. and Solyanikov, V.M.,Neftekhimiya, 1975, vol. 15, p. 124.Google Scholar
  45. 45.
    Pustarnakova, G.F.,Cand. Sci. (Chem.) Dissertation, Chernogolovka: Institute of Chemical Physics, 1976.Google Scholar
  46. 46.
    Gol’dberg, V.M. and Obukhova, L.K.,Uspekhi khimii organicheskikh perekisnykh soedinenii i avtookisleniya (Advances in Chemistry of Organic Peroxides and Autooxidation), Moscow: Khimiya, 1969, p. 160.Google Scholar
  47. 47.
    Maizus, Z.K., Skibida, I.P., and Emanuel’, N.M.,Dokl. Akad. Nauk SSSR, 1965, vol. 164, p. 374.Google Scholar
  48. 48.
    Clark, T.A.,Handbook of Computational Chemistry, New York: Wiley, 1985, p. 375.Google Scholar
  49. 49.
    Skibida, I.P., Sakharov, A.M., and Emanuel’, O.N.,Itogi Nauki Tekh., Ser.: Kinet. Katal., 1986, vol. 15, p. 10.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • M. T. Lisovska
    • 1
  • V. I. Timokhin
    • 1
  • A. P. Pokutsa
    • 1
  • V. I. Kopylets
    • 1
  1. 1.Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineLvovUkraine

Personalised recommendations