Advertisement

Kinetics and Catalysis

, Volume 41, Issue 2, pp 145–151 | Cite as

Double step-ladder model of activation in the processes of high-temperature dissociation of polyatomic molecules

  • A. V. Eremin
  • V. V. Shumova
Article
  • 46 Downloads

Abstract

A unified mechanism of the interaction of vibrational relaxation and dissociation of polyatomic molecules working in a wide temperature range (from 2000 to 10000 K) is proposed, which is described by a double step-ladder model. Relaxation due to collisions with the transfer of small and large portions of energy is taken into account. The transfer efficiency of the portions of thermal energy in the high-temperature decomposition upon the collisions of CO2 molecules with atomic and molecular partners is determined. The reaction rate constant of high-temperature dissociation of carbon dioxide is calculated. The data presented in the article suggest a new method for elucidating the mechanism of energy exchange in the absence of vibrational and translational equilibrium and at ultrahigh temperatures when the dissociation takes place during the time of several collisions.

Keywords

Polyatomic Molecule Symmetric Mode Vibrational Relaxation Vibrational Temperature Asymmetric Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuznetsov, N.M.,Kinetika monomolekulyarnykh reaktsii (Kinetics of Unimolecular Reactions), Moscow: Nauka, 1982.Google Scholar
  2. 2.
    Oref, I. and Tardy, D.C.,J. Chem. Phys., 1989, vol. 91, no. 1, p. 205.CrossRefGoogle Scholar
  3. 3.
    Sergievskaya, A.L., Kovach, E.A., and Losev, S.A.,Opyt informatsionno-matematicheskogo modelirovaniya vfiziko-khimicheskoi kinetike (Information-Mathematical Modeling in Physicochemical Kinetics), Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  4. 4.
    Zuev, A.P., Tkachenko, B.K., and Fomin, N.A.,Khim. Fiz., 1985, vol. 47, no. 11, p. 1466.Google Scholar
  5. 5.
    Kondrat’ev, V.N. and Nikitin, E.E.,Kinetika i mekhanizm gazofaznykh reaktsii (Kinetics and Mechanisms of Gas-Phase Reactions), Moscow: Nauka, 1974.Google Scholar
  6. 6.
    Tardy, D.C. and Rabinovitch, B.S.,Chem. Rev., 1977, vol. 77, no. 3, p. 369.CrossRefGoogle Scholar
  7. 7.
    Oref, I. and Tardy, D.C.,Chem. Rev., 1990, vol. 90, p. 1407.CrossRefGoogle Scholar
  8. 8.
    Troe, J.,J. Chem. Phys., 1981, vol. 75, no. 1, p. 226.CrossRefGoogle Scholar
  9. 9.
    Margulis, I.M., Asperse, S.S., Steel, C., and Oref, I.,J. Chem. Phys., 1989, vol. 90, p. 923.CrossRefGoogle Scholar
  10. 10.
    Mullin, A.S., Michaels, C.A., and Flynn, G.W.,J. Chem. Phys., 1995, vol. 102, p. 6032.CrossRefGoogle Scholar
  11. 11.
    Bernshtein, V., Lim, K.F., and Oref, I.,J. Phys. Chem., 1995, vol. 99, p. 4531.CrossRefGoogle Scholar
  12. 12.
    Bernshtein, V., Oref, I., and Lendvay, G.,J. Phys. Chem., 1996, vol. 100, no. 23, p. 9738.CrossRefGoogle Scholar
  13. 13.
    Zaslonko, I.S. and Mukoseev, Yu.K.,Khim. Fiz., 1998, vol. 17, no. 3, p. 13.Google Scholar
  14. 14.
    Adamovich, I.V., Macheret, S.O., Rich, J.W., and Treanor, Ch.E.,AIAA, paper no. 95–2060.Google Scholar
  15. 15.
    Zaslonko, I.S., Eremin, A.V., and Shumova, V.V.,Kinet. Katal., 1996, vol. 37, no. 4, p. 485.Google Scholar
  16. 16.
    Eremin, A.V., Ziborov, V.S., and Shumova, V.V.,Khim. Fiz., 1997, vol. 17, no. 9, p. 5.Google Scholar
  17. 17.
    Gaiduchenya, L.V., Zaslonko, I.S., Mukoseev, Yu.K., and Tereza, A.M.,Khim. Fiz., 1990, vol. 9, no. 4, p. 443.Google Scholar
  18. 18.
    Zaslonko, I.S.,Usp. Khim., 1997, vol. 66, no. 6, p. 537.Google Scholar
  19. 19.
    Achasov, O.V. and Ragozin, D.S,Preprint of ITMO im. Lykova AN BSSR, Minsk, 1986, no. 16.Google Scholar
  20. 20.
    Ibragimova, L.B.,Khim. Fiz., 1990, vol. 6, no. 9, p. 785.Google Scholar
  21. 21.
    Masuda, W., Kawahara, S., Yamada, H., and Maruki, Y.,Trans. Jpn. Soc. Aeronaut. Space Sci., 1984, vol. 27, no. 75, p. 53.Google Scholar
  22. 22.
    Gordiets, B.F., Osipov, A.I., and Shelepin, L.A.,Kineticheskie protsessy v gazakh i molekulyarnye lazery (Kinetics Processes in Gases and Molecular Lasers), Moscow: Nauka, 1980.Google Scholar
  23. 23.
    Eremin, A.V., Roth, P., Shumova, V.V., and Ziborov, V.S.,21st Int. Symp. on Shock Waves, Great Keppel, 1997, paper no. 2180.Google Scholar
  24. 24.
    Rosser, W.A., Jr. and Jerry, E.T.,J. Chem. Phys., 1971, vol. 54, p. 4131.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. V. Eremin
    • 1
  • V. V. Shumova
    • 1
  1. 1.Scientific Research Center for Thermophysics of Pulse Action, Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations