Skip to main content
Log in

Microvascular thermal equilibration in rat cremaster muscle

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A new experimental approach was developed to obtain the first direct measurements of the axial countercurrent thermal equilibration in a microvascular tissue preparation using high resolution infrared thermography. Detailed surface temperature measurements were obtained for an exteriorized rat cremaster muscle in which pharmacological vasoactive agents were used to change the local blood flow Peclet number from 1 to 14 in the feeding artery. Under normal conditions, only the 1A arteries (>70 μm diameter) showed thermal nonequilibration with the surrounding tissue. The theoretical model developed by Zhu and Weinbaum (28) for a two-dimensional tissue preparation with arbitrarily embedded countercurrent vessels was modified to include axial conduction and the presence of the supporting glass slide. This modified model was used to interpret the experimental results and to relate the surface temperature profiles to the bulk temperature profiles in the countercurrent artery and vein and the local average tissue temperature in the crosssectional plane. Surface temperature profiles transverse to the vessel axis are shown to depend significantly on the tissue inlet temperature. The eigenfunction for the axial thermal equilibration depends primarily on the blood flow Peclet number and the environmental convective coefficient. The theoretical results predict that when ρ ar *Pe is less than 1 mm (the range in our experiments), axial conduction is the dominant mode of axial thermal equilibration. For 1 < ρ ar *Pe < 3 mm, countercurrent blood flow becomes comparable to axial conduction, whereas, when ρ ar *Pe > 3 mm, countercurrent blood flow is the dominant mode of axial thermal equilibration. Therefore, for ρ ar *Pe > 3 mm the axial equilibration length is proportional to the blood flow Peclet number, as predicted previously by Zhu and Weinbaum in a study in which axial conduction was neglected. It also is shown that the axial decay of the tissue temperature at low perfusion rates can be described by a simple one-dimensional Weinbaum-Jiji equation with a newly derived conduction shape factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson G. T., and J. W. Valvano. A small artery heat transfer model for self-heated thermistor measurements of perfusion in the kidney cortex.J. Biomech. Eng. 116:71–78, 1994.

    PubMed  CAS  Google Scholar 

  2. Baez, S. An open cremaster muscle preparation for the study of blood vessels byin vivo microscopy.Microvasc. Res. 5:384–394, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Baish, J. W., P. S. Ayyaswamy, and K. R. Foster. Heat transport mechanism in vascular tissues: a model comparison.J. Biomech. Eng. 108:324–331, 1986a.

    CAS  Google Scholar 

  4. Baish, J. W., P. S. Ayyaswamy, and K. R. Foster. Smallscale temperature fluctuations in perfused tissue during local hyperthermia.J. Biomech. Eng., 108:246–250, 1986b.

    CAS  Google Scholar 

  5. Baker, M., and H. Wayland. On-line volume flow rate and velocity profile measurement for blood in microvessels.Microvasc. Res. 7:131–134, 1974.

    Article  PubMed  CAS  Google Scholar 

  6. Bau, H. H., and S. S. Sadhal. Heat losses from a fluid flowing in a buried pipe.Int. J. Heat Mass Transfer 25: 1621–1629, 1982.

    Article  CAS  Google Scholar 

  7. Bazett, H. C., I. Love, M. Newton, I. Eisenberg, R. Day, and R. Forest. Temperature changes in blood flowing in the arteries and veins in man.J. Appl. Physiol. 1:3–19, 1948.

    PubMed  CAS  Google Scholar 

  8. Charny, C. K., S. Weinbaum, and R. L. Levin. An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions.J. Biomech. Eng. 112:80–87, 1990.

    PubMed  CAS  Google Scholar 

  9. Chato, J. C., Heat transfer to blood vessels.J. Biomech. Eng. 102:110–118, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Chen, M. M., and K. R. Holmes. Microvascular contributions in tissue heat transfer. Ann. NY Acad. Sci. 335:137–150, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Crezee, J., and J. J. W. Lagendijk. Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue.Phys. Med. Biol. 37:905–923, 1990.

    Article  Google Scholar 

  12. Crezee, J., J. Mooibroek, C. K. Bos, and J. J. W. Lagendijk. Interstitial heating: experiments in artificially perfused bovine tongues.Phys. Med. Biol. 36:823–833, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. DiFelice, R. F., Jr., and H. H. Bau. Conductive heat transfer between eccentric cylinders with boundary conditions of the third kind.J. Heat Transfer 105:678–680, 1983.

    Article  Google Scholar 

  14. Faber, J. E.,In situ analysis of α-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation.Circ. Res. 62:37–50, 1988.

    PubMed  CAS  Google Scholar 

  15. Lemons, D. E., S. Chien, L. I. Crawshaw, S. Weinbaum, and L. M. Jiji. The significance of vessel size and type in vascular heat transfer.Am. J. Physiol. 253:R128-R135, 1987.

    PubMed  CAS  Google Scholar 

  16. Mitchell, J. W., and G. R. Myers. An analytical model of the counter-current heat exchange phenomena.Biophys. J. 8:897–911, 1968.

    PubMed  CAS  Google Scholar 

  17. Pennes, H. H.. Analysis of tissue and arterial blood temperatures in the resting human forearm.J. Appl. Physiol. 1: 93–122, 1948.

    PubMed  CAS  Google Scholar 

  18. Roemer, R. B., E. G. Moros, and K. Hynynen. A comparison of bio-heat transfer and effective conductivity equation predictions to experimental hyperthermia data.Adv. Bioeng. ASME Winter Annual Meeting, 11–15, 1989.

  19. Scholander P. F., and J. Krog. Countercurrent heat exchange and vascular bundles in sloths.J. Appl. Physiol. 10:405–411, 1957.

    PubMed  CAS  Google Scholar 

  20. Thiyagarajan, R., and M. M. Yovanovich. Thermal resistance of a buried cylinder with constant flux boundary condition.J. Heat Transfer 96:249–250, 1974.

    Google Scholar 

  21. Weinbaum, S., and L. M. Jiji. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature.J. Biomech. Eng. 107:131–139, 1985.

    PubMed  CAS  Google Scholar 

  22. Weinbaum, S., and L. M. Jiji. The matching of thermal fields surrounding countercurrent microvessels and the closure approximation in the Weinbaum-Jiji bioheat equation.J. Biomech. Eng. 111: 271–275, 1989.

    PubMed  CAS  Google Scholar 

  23. Weinbaum, S., L. M. Jiji, and D. E. Lemons. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer. I. Anatomical foundation and model conceptualization.J. Biomech. Eng. 106:321–330, 1984.

    PubMed  CAS  Google Scholar 

  24. Wissler, E. H. An analytical solution countercurrent heat transfer between parallel vessels with a linear axial temperature gradient.J. Biomech. Eng. 110:254–256, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, Y. L., S. Weinbaum, and L. M. Jiji. A new analytic technique for 3-D heat transfer from a cylinder with two or more axially interacting eccentrically embedded vessels with application to countercurrent blood flowInt. J. Heat Mass Transfer 36:1073–1083, 1993.

    Article  Google Scholar 

  26. Xu, L. X., M. M. Chen, K. R. Holmes and H. Arkin. The theoretical evaluation of the Pennes, the Chen-Holmes and the Weinbaum-Jiji bioheat transfer models in the pig renal cortex. ASME Winter Annual Meeting, Atlanta, HTD, Vol. 189, pp. 15–22, 1991.

    Google Scholar 

  27. Zhu, L., D. E. Lemons, and S. Weinbaum. A new approach for prediction the enhancement in the effective conductivity of perfused muscle tissue due to hyperthermia.Ann. Biomed. Eng. 23:1–12, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu, L., and S. Weinbaum. A model for heat transfer from embedded blood vessels in two-dimensional tissue preparations.J. Biomech. Eng. 117:64–73, 1995.

    PubMed  CAS  Google Scholar 

  29. Zhu, M., S. Weinbaum, and L. M. Jiji. Heat exchange between unequal countercurrent vessels asymmetrically embedded in a cylinder with surface convection.Int. J. Heat Mass Transfer 33:2275–2284, 1990.

    Article  CAS  Google Scholar 

  30. Zhu, M., S. Weinbaum, L. M. Jiji, and D. E. Lemons. On the generalization of the Weinbaum-Jiji bioheat equation to microvessels of unequal size; the relation between the near field and local average tissue temperature.J. Biomech. Eng. 110:74–81, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Lemons, D.E. & Weinbaum, S. Microvascular thermal equilibration in rat cremaster muscle. Ann Biomed Eng 24 (Suppl 1), 109–123 (1995). https://doi.org/10.1007/BF02771000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771000

Keywords

Navigation