, Volume 42, Issue 1–2, pp 71–83 | Cite as

Effectiveness of ladybirds as biological control agents: Patterns and processes

  • A. F. G. Dixon
  • J. -L. Hemptinne
  • P. Kindlmann


Aphidophagous species of ladybirds have generally proved ineffective biocontrol agents, whereas many coccidophagous species have proved very effective, especiallyRodolia cardinalis (Caltagirone & Doutt, 1989). Two hypotheses have been proposed to account for this pattern: the optimum food utilization/satiation hypothesis (Mills, 1982) and the generation time ratio hypothesis (Kindlmann & Dixon, 1996). In this paper the extensive literature on ladybirds is used to test these hypotheses.


aphids biological control coccids ladybirds 

Efficacité des coccinelles comme agents de lutte biologique


Chez les coccinelles, les espèces aphidiphages se sont montrées généralement peu efficaces comme agents de lutte biologique, à l’inverse de nombreuses espèces coccidiphages qui se sont révélées très efficaces, telleRodolia cardinalis (Caltagirone & Doutt, 1989). Deux hypothèses ont été proposées pour expliquer ce phénomène : l’hypothèse de l’utilisation optimale de la proie/ satiété (Mills, 1982) et l’hypothèse du rapport des durées de développement des générations (Kindlmann & Dixon, 1996). Dans cette étude, la vaste littérature existant sur les coccinelles est utilisée pour tester ces hypothèses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwala, B. K. &Bhattacharya, S. — 1994. Anholocycly in tropical aphids: population trends and influence of temperature on development, reproduction and survival of three aphid species (Homoptera: Aphidoidea). —Phytophaga, 6, 17–27.Google Scholar
  2. Ball, J. C. — 1980. Development and fecundity of the white peach scale at two constant temperatures. —Fla Entomol., 63, 188–194.CrossRefGoogle Scholar
  3. Bodenheimer, F. S. — 1932.Icerya purchasi Mask. undNovius cardinalis Muls. Eine Bevölkerungswissenschaftenliche Studie über die Grundlagen der biologischen Bekämpfung. —Z. angew. Entomol., 19, 514–543.Google Scholar
  4. Booth, R. G., Cross, A. E., Fowler, S. V. &Shaw, R. H. — 1995. The biology and taxonomy ofHyperaspis pantherina (Coleoptera: Coccinellidae) and the classical biological control of its prey.Orthezia insignis (Homoptera: Ortheziidae). —Bull. Entomol. Res., 85, 307–314.Google Scholar
  5. Caltagirone, L. E. &Doutt, R. L. — 1989. The history of the vedalia beetle importation to California and its impact on the development of biological control. —Annu. Rev. Entomol., 34, 1–16.CrossRefGoogle Scholar
  6. Campbell, C. D. &Hutchinson, W. D. — 1995. Rearing methods and demographic statistics for a subterranean morph of the sugarbeet root aphid (Homoptera: Aphididae). —Can. Entomol., 127, 65–77.CrossRefGoogle Scholar
  7. Carroll, D. P. &Hoyt, S. C. — 1986. Developmental rate, weight and ovarian parameters of apple aphids,Aphis pomi (Homoptera: Aphididae), reared at one or two constant temperatures, with evidence of residual effects. —Environ. Entomol., 15, 607–613.Google Scholar
  8. Chazeau, J. — 1981. Données sur la biologie deColeophora quadrivittata [Col.: Coccinellidae], prédateur deCoccus viridis [Hom.: Coccidae] en Nouvelle-Calédonie. —Entomophaga, 26, 301–312.CrossRefGoogle Scholar
  9. Clausen, C. P. — 1940. Entomophagous Insects. —McGraw, New York, 688 pp.Google Scholar
  10. Cressman, A. W. — 1935. Biology of the camphor scale and a method for predicting the time of appearance of stages in the field. —J. Agric. Res., 50, 267–283.Google Scholar
  11. Dixon, A. F. G. — 1959. An experimental study of the searching behaviour of the predatory coccinellid beetleAdalia decempunctata (L.). —J. Anim. Ecol., 28, 259–281.CrossRefGoogle Scholar
  12. Dixon, A. F. H., Hemptinne, J.-L. &Kindlmann, P. — 1995. The ladybird fantasy - prospects and limits to their use in the biocontrol of aphids.Züchtungsforschung (Proceedings International Symposium 75 years of Phytopathological and Resistance Research at Aschersleben) 1(2), 395–397.Google Scholar
  13. El Din, N. S. — 1976. Effects of temperature on the aphidMyzus persicae (Sulz.), with special reference to critically low and high temperature. —Z. angew. Entomol., 80, 7–14.Google Scholar
  14. El-Minshawy, A. M. &Moursi, K. — 1976. Biological studies on some soft scale-insects (Hom., Coccidae) attacking guava trees in Egypt. —Z. angew. Entomol., 81, 363–371.Google Scholar
  15. El-Minshawy, A. M., Karam, H. H. &El-Sawaf, S. K. — 1974. Biological studies on the long tailed mealy bug,Pseudococcus longispinus (Targ. and Tozzeti). —Bull. Soc. Entomol. Egypte, 58, 385–391.Google Scholar
  16. Fabres, G. &Kiyindou, A. — 1985. Comparaison du potentiel biotique de deux coccinelles (Exochomus flaviventris etHyperaspis senegalensis hottentotta, Col. Coccinellidae) prédatrices dePhenacoccus manihoti (Hom., Pseudococcidae) au Congo. —Acta Oecol./Oecol. appl., 6, 339–348.Google Scholar
  17. Graf, B., Baumgärtner, J. &Delucchi, V. — 1985. Life table statistics of three apple aphids,Dysaphis plantaginea, Rhopalosiphum insertum, andAphis pomi (Homoptera, Aphididiae), at constant temperatures. —Z. angew. Entomol., 99, 285–294.Google Scholar
  18. Groeters, F. R. — 1992. Geographic conservation of developmental rate in the milkweed-oleander aphid,Aphis nerii. —Acta oecol., 13, 649–661.Google Scholar
  19. Hafez, M. &Salama, H. S. — 1969. Biological studies on the sugarcane mealy bug,Saccharicoccus sacchari CKII., in Egypt [Hemiptera-Homoptera: Coccoidea]. —Bull. Soc. Entomol. Egypte, 53, 499–516.Google Scholar
  20. Hafez, M. &Salama, H. S. — 1969. Biology of the citrus purple scaleLepidosaphes beckii Newm., in Egypt [Hemiptera-Homoptera: Coccoidea]. —Bull. Soc. Entomol. Egypte, 53, 518–532.Google Scholar
  21. Hayakawa, D. L., Grafius, E. &Stehr, F. W. — 1990. Effects of temperature on longevity, reproduction, and development of the asparagus aphid (Homoptera: Aphididae) and the parasitoid,Diaeretiella rapae (Hymenoptera: Braconidae). —Environ. Entomol., 19, 890–897.Google Scholar
  22. Heidari, M. — 1989. Biological control of glasshouse mealy bugs using coccinellid predators. — PhD Thesis, Wye College, University of London.Google Scholar
  23. Herrera, C. J., van Driesche, R. G. &Bellotti, A. C. — 1989. Temperature-dependent growth rates for the cassava mealy bug,Phenacoccus herreni, and two of its encyrtid parasitoids,Epidinocarsis diversicornis andAcerophagus coccois in Columbia. —Entomol. exp. appl., 50, 21–27.CrossRefGoogle Scholar
  24. Hodek, I. — 1973. Biology of Coccinellidae.Academia, Prague, 260 p.Google Scholar
  25. Ibrahim, M. M. — Studies ofCoccinella undecimpunctata aegyptiaca Rche II. Biology and Life-history [Coleoptera: Coccinellidae]. —Bull. Soc. Entomol. Egypte, 39, 395–423.Google Scholar
  26. Iheagwam, E. U. &Eluwa, M. C. — 1983. The effects of temperature on the development of the immature stages of the Cassava mealy bug,Phenacoccus manihoti Mat-Ferr. (Homoptera, Pseudococcidae). —Deutsche Entomologische Zeitschrift, 30, 17–22.CrossRefGoogle Scholar
  27. Ito, K. — 1938. Studies on the life history of the pineapple mealy bug,Pseudococcus brevipes (Ckll.). —J. Econ. Entomol., 31, 291–298.Google Scholar
  28. Izhevsky, S. S. &Orlinsky, A. D. — 1988. Life history of the importedScymnus (Nephus) reunioni [Col.: Coccinellidae] predator of mealy bugs. —Entomophaga, 33, 101–114.CrossRefGoogle Scholar
  29. Kaakeh, W. &Dutcher, J. D. — 1992. Estimation of life parameters ofMonelliopsis pecanis, Monellia caryella andMelanocallis caryaefoliae (Homoptera: Aphididae) on single pecan leaflets. —Environ. Entomol., 21, 632–639.Google Scholar
  30. Kanika-Kiamfu, J., Kiyindou, A., Brun, J. &Iperti, G. — 1992. Comparaison des potentialités biologiques de trois coccinelles prédatrices de la cochenille farineuse du maniocPhenaccocus manihoti (Hom. Pseudococcidae). —Entomophaga, 37, 277–282.CrossRefGoogle Scholar
  31. Kapur, A. P. — 1942. Bionomics of some Coccinellidae, predaceous on aphids and coccids in North India. —Indian J. Entomol., 4, 49–66.Google Scholar
  32. Kawauchi, S. — 1983. The threshold temperature and thermal constant for development from the egg to the adult form ofCoccinella septempunctata brucki, Propylea japonica andScymnus (Pullus) hoffmanni (Coleoptera, Coccinellidae). —Kurume University Journal, 32, 45–51.Google Scholar
  33. Kehat, M. — 1968. The feeding behaviour ofPharoscymnus numidicus (Coccinellidae), predator of the date palm scaleParlatoria blanchardi. —Entomol. Exp. Appl., 11, 30–42.CrossRefGoogle Scholar
  34. Kieckhefer, R. W. &Elliot, N. C. — 1989. Effect of fluctuating temperature on development of immature Russian wheat aphid (Homoptera, Aphididae) and demographic statistics. —J. Econ. Entomol., 82, 119–122.Google Scholar
  35. Kindlmann, P. &Dixon, A. F. G. — 1989. Developmental constraints in the evolution of reproductive strategies; telescoping of generations in parthenogenetic aphids. —Funct. Ecol., 3, 531–537.CrossRefGoogle Scholar
  36. Kindlmann, P. &Dixon, A. F. G. — 1993. Optimal foraging in ladybird beetles (Coleoptera Coccinellidae) and its consequences for their use in biological control. —Eur. J. Entomol., 90, 443–450.Google Scholar
  37. Kindlmann, P. & Dixon, A. F. G. — 1996. Strategies of aphidophagous predators: lessons for modelling insect predator-prey dynamics. —Entomophaga.Google Scholar
  38. Kirkland, R. L., Peries, I. D. &Hamilton, G. C. — 1981. Differentiation and development rate of nymphal instars of greenbug reared on sorghum. —J. Kans. Entomol. Soc., 54, 743–747.Google Scholar
  39. Kiyindou, A. &Fabres, G. — 1987. Étude de la capacité d’accroissement chezHyperaspis raynevali [Col.: Coccinellidae] prédateur introduit au Congo pour la régulation des populations dePhenacoccus manihoti [Hom.: Pseudococcidae]. —Entomophaga, 32, 181–189.CrossRefGoogle Scholar
  40. Kiyindou, A. — 1989. Seuil thermique de développement de trois Coccinelles prédatrices de la Cochenille du Manioc au Congo. —Entomophaga, 34, 409–415.CrossRefGoogle Scholar
  41. Kiyindou, A., Iperti, F., Ferran, A. &Brun, J. — 1992. Influence de la température et de la biomasse alimentaire sur le développement d’une coccinelle,Diomus hennesseyi (Coleoptera: Coccinellidae), prédatrice dePhenacoccus manihoti (Homoptera: Pseudococcidae) en Afrique intertropicale. —J. Afr. Zool., 106, 479–488.Google Scholar
  42. Kocourek, F. &Beránková, J. — 1989. Temperature requirements for development and population growth of the green peach aphidMyzus persicae on sugar beet. —Acta Entomol. Bohemoslov., 86, 349–355.Google Scholar
  43. Komazaki, S. — 1982. Effects of constant temperatures on population growth of three aphid species,Toxoptera citricidus (Kirkaldy),Aphis citricola van der Goot andAphis gossypii Glover (Homoptera: Aphididae) on Citrus. —Appl. Entomol. Zool., 17, 75–81.Google Scholar
  44. Lamana, M. L. &Miller, J. C. — 1995. Temperature-dependent development in a polymorphic lady beetle,Calvia quatuordecimguttata (Coleoptera: Coccinellidae). —Ann. Entomol. Soc. Am., 88, 785–790.Google Scholar
  45. Lamb, R. J. — 1992. Developmental rate ofAcyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects. —Environ. Entomol., 21, 10–19.Google Scholar
  46. Lema, K. M. &Herren, H. R. — 1985. The influence of constant temperature on population growth rates of the cassava mealy bugPhenacoccus manihoti. —Entomol. exp. appl., 38, 165–169.CrossRefGoogle Scholar
  47. Leather, S. R. — 1980. Aspects of the ecology of the bird cherry-oat aphid,Rhopalosiphum padi L. PhD. thesis, University of East Anglia.Google Scholar
  48. Le Rü, B. &Fabres, G. — 1987. Influence de la température et de l’hygrométrie relative sur la capacité d’accroissement et le profil d’abondance des populations de la cochenille du maniocPhenacoccus manihoti (Hom., Pseudococcidae), au Congo. —Acta Oecol. Oecol. Appl., 8, 165–174.Google Scholar
  49. McMullen, R. D. — 1967. The effects of photoperiod, temperature, and food supply on rate of development and diapause inCoccinella novemnotata. —Can. Entomol., 99, 578–586.CrossRefGoogle Scholar
  50. Michels, G. J. &Behle, R. W. — 1991. Effects of two prey species on the development ofHippodamia sinnuata (Coleoptera: Coccinellidae) larvae at constant temperatures. —J. Econ. Entomol., 84, 1480–1484.Google Scholar
  51. Michels, G. J. &Flanders, R. V. — 1992. Larval development, aphid consumption and oviposition for five imported coccinellids at constant temperature on Russian wheat aphids and greenbugs. —Southwest. Entomol., 17, 233–243.Google Scholar
  52. Mills, N. J. — 1982. Satiation and the functional response: a test of a new model. —Ecol. Entomol., 7, 305–315.Google Scholar
  53. Moutia, L. A. — 1944. The sugar-cane scale,Aulacaspis tegalensis, Zehnt. —Bull. Entomol. Res., 35, 69–77.CrossRefGoogle Scholar
  54. Muma, M. H. — 1955. Some ecological studies on the twice-stabbed lady beetleChilocorus stigma (Say). —Ann. Entomol. Soc. Am., 48, 493–498.Google Scholar
  55. Myers, L. E. — 1932. Two economic greenhouse mealy bugs of Mississippi. The citrus mealy bug and the Mexican mealy bug. —J. Econ. Entomol., 24, 891–896.Google Scholar
  56. Naranjo, S. E., Gibson, R. L. &Walgenbach, D. D. — 1990. Development, survival and reproduction ofScymnus frontalis (Coleoptera: Coccinellidae), an imported predator of Russian wheat aphid, at four fluctuating temperatures. —Ann. Entomol. Soc. Am., 83, 527–531.Google Scholar
  57. Nsiama She, H. D., Odebiyi, J. A. &Herren, H. R. — 1984. The biology ofHyperaspis jucunda [Col.: Coccinellidae] an exotic predator of the cassava mealy bugPhenacoccus manihoti [Hom.: Pseudococcidae] in Southern Nigeria. —Entomophaga, 29, 87–93.CrossRefGoogle Scholar
  58. Obrycki, J. J. &Tauber, M. J. — 1982. Thermal requirements for development ofHippodamia convergens (Coleoptera: Coccinellidae). —Ann. Entomol. Soc. Am., 75, 678–683.Google Scholar
  59. Okrouhlá, M., Chakrabarti, S. &Hodek, I. — 1983. Developmental rate and feeding capacity inCheilomenes sulphurea (Coleoptera: Coccinellidae). —Vestnik ceskoslovlenske spolecnosti zoologicke, 47, 105–117.Google Scholar
  60. Pdoler, H. &Henen, J. — 1983. A comparative study of the effects of constant temperatures on development time and survival of two coccinellid beetles of the genusChilocorus. —Phytoparasitica, 11, 167–176.Google Scholar
  61. Ponsonby, D. J. — 1994. Biological control of glasshouse scale insects using the Coccinellid predatorChilocorus nigritus. PhD Thesis, Wye College, University of London.Google Scholar
  62. Rodriguez-Saonia, C. &Miller, J. C. — 1995. Life history traits inHippodamia convergens (Coleoptera: Coccinellidae) after selection for fast development. —Biol. Contr., 5, 389–396.CrossRefGoogle Scholar
  63. Rohitha, B. H. &Penman, D. R. — 1983. Effect of temperature of the biology of blue green lucerne aphid,Acyrthosiphon kondoi. —N. Z. J. Zool., 10, 299–308.Google Scholar
  64. Schneider, B., Podoler, H. &Rosen, D. — 1987. Population dynamics of the Florida wax scale,Ceroplastes floridensis (Homoptera: Coccidea) on citrus in Israel 3. Developmental rate and progression of mean age. —Acta Oecol. Oecol. Appl., 8, 95–103.Google Scholar
  65. Sengonça, C., Hoffman, A. &Kleinhenz, B. — 1994. Laboruntersuchungen zur Entwicklung, Lebendsdauer und Fruchtbarkeit der GetreideblattlausartenSitobion avenae (F.) undRhopalosiphum padi (L.) (Hom., Aphididae) bei verschiedenen tieferen Temperaturen. —J. Appl. Entomol., 117, 224–233.CrossRefGoogle Scholar
  66. Shu-sheng, L. &Hughes, R. D. — 1987. The influence of temperature and photoperiod on the developmental, survival and reproduction of the sowthistle aphid,Hyperomyzus lactucae. —Entomol. Exp. Appl., 43, 31–38.CrossRefGoogle Scholar
  67. Simpson, R. G. &Burkhardt, C. C. — 1966. Biology and evaluation of certain predators ofTherioaphis maculata (Buckton). —J. Econ. Entomol., 53, 89–94.Google Scholar
  68. Tawfik, M. F. S., Nasr, S. A. &Saad, B. M. — 1973. The biology ofScymnus interruptus [Coleoptera: Coccinellidae]. —Bull. Soc. Entomol. Egypte, 57, 9–26.Google Scholar
  69. Taylor, T. H. C. — 1935. The campaign againstAspidiotus destructor, Sign., in Fiji. —Bull. Entomol. Res., 26, 1–102.CrossRefGoogle Scholar
  70. Uichanco, L. B. &Villanueva, F. E. — 1932. Biology of the pink mealy bug of sugar caneTrionymus sacchari (Cockerell), in the Philippines. —The Philippine Agriculturist, 21, 205–276.Google Scholar
  71. Umeh, E. D. N. N. — 1982. Biological studies onHyperaspis marmottani Fairm. (Col.: Coccinellidae), a predator of the cassava mealy bugPhenacoccus manihoti Mat-Ferr. (Hom., Pseudococcidae). —Z. angew. Entomol., 94, 530–532.Google Scholar
  72. Washburn, J. O. & Frankie, G. W. — 1985. Biological studies of iceplant scales,Pulvinariella mesembryanthemi andPulvinaria delottoi (Homoptera: Coccidae), in California. —Hilgardia, 53, 27 pp.Google Scholar
  73. Wellings, P. W. — 1981. The effect of temperature on the growth and reproduction of two closely related aphid species on sycamore. —Ecol. Entomol., 6, 209–214.Google Scholar
  74. Wright, E. J. &Laing, J. E. — 1978. The effects of temperature on development, adult longevity and fecundity ofColeomegilla maculata lengi and its parasitePerilitus coccinellae. —Proc. Entomol. Soc. Ontario, 109, 33–47.Google Scholar
  75. Yu, D. S. &Luck, R. F. — 1988. Temperature-dependent size and development of California Red Scale (Homoptera: Diaspididae) and its effect on host availability for the ectoparasitoidAphytis melinus De Bach (Hymenoptera: Aphelinidae). —Environ. Entomol., 17, 154–161.Google Scholar
  76. Zar, J. H. — 1984. Biostatistical Analysis. —Prentice Hall International, London.Google Scholar

Copyright information

© Lavoisier Abonnements 1997

Authors and Affiliations

  • A. F. G. Dixon
    • 1
  • J. -L. Hemptinne
    • 2
  • P. Kindlmann
    • 3
  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.Faculté des Sciences Agronomiques de la Communauté FrançaiseGemblouxBelgium
  3. 3.Faculty of Biological SciencesUniversity of South Bohemia and Institute of Entomology, Czech Academy of SciencesCeské BudejoviceCzech Republic

Personalised recommendations