Skip to main content
Log in

Effective chiral lagrangians for spin-1 mesons

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

The commonly used types of effective theory for vector mesons are reviewed and their relationships clarified. They are shown to correspond to different choices of field for spin-1 particles and the rules for transforming between them are described. The importance of respecting chiral symmetry is stressed. The choice of fields that transform homogeneously under the nonlinear realisation of chiral symmetry imposes no preconceptions about the types of coupling for the mesons. This representation thus provides a convenient framework for relating different theories. It is also used to elucidate the nature of the assumptions in specific hiddengauge and massive Yang-Mills models that have been widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Donoghue, E. Golowich and B. R. Holstein,Dynamics of the standard model, (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  2. J. J. Sakurai,Currents and mesons, (University of Chicago Press, Chicago, 1969).

    Google Scholar 

  3. V. de Alfaro, S. Fubini, G. Furlan and C. Rossetti,Currents in hadron physics, (North Holland, Amsterdam, 1973).

    Google Scholar 

  4. S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys.41 (1969) 531.

    Article  ADS  MathSciNet  Google Scholar 

  5. Ö. Kaymakcalan, S. Rajeev and J. Schechter, Phys. Rev.D30 (1984) 594;

    ADS  Google Scholar 

  6. H. Gomm, Ö. Kaymakcalan and J. Schechter,Ibid. 2345.

    ADS  Google Scholar 

  7. U.-G. Meissner, Phys. Rep.161 (1988) 213.

    Article  ADS  Google Scholar 

  8. M. Bando, T. Kugo and K. Yamawaki, Phys. Rep.164 (1988) 217.

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Weinberg, Phys. Rev.166 (1968) 1568.

    Article  ADS  Google Scholar 

  10. S. Coleman, J. Wess and B. Zumino, Phys. Rev.177 (1969) 2239;

    Article  ADS  Google Scholar 

  11. C. G. Callan, S. Coleman, J. Wess and B. Zumino,ibid. 2247.

    Article  ADS  Google Scholar 

  12. G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys.B321 (1989) 425.

    Google Scholar 

  13. G. Ecker, H. Leutwyler, J. Gasser, A. Pich and E. de Rafael, Phys. Lett.B223 (1989) 425.

    ADS  Google Scholar 

  14. J. Bijnens, Ch. Bruno and E. de Rafael, Nucl. Phys.390 (1993) 501.

    Article  ADS  Google Scholar 

  15. J. Bijnens, NORDITA preprint 95/12NP (1995), hep-ph/9502393.

  16. A. Bramon, A. Grau and G. Pancheri, Phys. Lett.317 (1993) 190.

    Google Scholar 

  17. S. I. Eidelman, Z. K. Silagadze and E. A. Kuraev, Phys. Lett.B346 (1995) 186.

    ADS  Google Scholar 

  18. H. B. O’Connell, B. C. Pearce, A. W. Thomas and A. G. Williams, Phys. Lett.B336 (1994) 1;B354 (1995) 14; University of Adelaide preprint ADP-95-1/T168 (1995), hep-ph/9501251, to be published inTrends in Particle and Nuclear Physics;

    ADS  Google Scholar 

  19. H. B. O’Connell, A. G. Williams, M. Bracco and G. Krein, University of Adelaide preprint ADP-95-49/T196 (1995), hep-ph/9510425.

  20. C. Gale and J. I. Kapusta, Nucl. Phys.B357 (1991) 65;

    Article  ADS  Google Scholar 

  21. C. Song, Phys. Rev.D48 (1993) 1375;

    ADS  Google Scholar 

  22. S.-H. Lee, C. Song and H. Yabu, Phys. Lett.B341 (1995) 407;

    ADS  Google Scholar 

  23. C. Song, hep-ph/9501364.

  24. H. Shiomi and T. Hatsuda, Phys. Lett.B334 (1994) 281.

    ADS  Google Scholar 

  25. G. E. Brown and M. Rho, Phys. Lett.B338 (1994) 301; hep-ph/9504250, to be published in Phys. Reports.

    ADS  Google Scholar 

  26. R. D. Pisarski, Phys. Rev.D52 (1995) R3773; hep-ph/9505257.

  27. S. Weinberg, Phys. Rev. Lett.17 (1966) 616.

    Article  ADS  Google Scholar 

  28. Y. Tomozawa, Nuovo Cim.46A (1966) 707.

    Article  ADS  Google Scholar 

  29. K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett.16 (1966) 255;

    Article  ADS  MathSciNet  Google Scholar 

  30. Fayyazuddin and Riazuddin, Phys. Rev.147 (1966) 1071.

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Gasser and H. Leutwyler, Ann. Phys.158 (1984) 142; Nucl. Phys.B250 (1985) 465.

    Article  ADS  MathSciNet  Google Scholar 

  32. J. F. Donoghue, C. Ramirez and G. Valencia, Phys. Rev.D39 (1989) 1947.

    ADS  Google Scholar 

  33. D. Kalafatis, Phys. Lett.B313 (1993) 115.

    ADS  Google Scholar 

  34. D. Kalafatis and M. C. Birse, Nucl. Phys.A584 (1995) 589.

    ADS  Google Scholar 

  35. H. Georgi, Phys. Rev. Lett.63 (1989) 1917; Nucl. Phys.331 (1990) 311.

    Article  ADS  Google Scholar 

  36. M. Bando, T. Kugo and K. Yamawaki, Nucl. Phys.B259 (1985) 493.

    Article  ADS  Google Scholar 

  37. M. Bando, T. Kugo and K. Yamawaki, Prog. Theor. Phys.73 (1985) 1541.

    Article  ADS  Google Scholar 

  38. Y. Brihaye, N. K. Pak and P. Rossi, Nucl. Phys.B254 (1985) 71.

    Article  ADS  Google Scholar 

  39. E. Pallante and R. Petronzio, Nucl. Phys.B396 (1993) 205.

    Article  ADS  Google Scholar 

  40. B. Borasoy and U.-G. Meissner, Universität Bonn preprint TK-95-31, hep-ph/9511320.

  41. J. Bijnens and E. Pallante, NORDITA preprint 95/63, hep-ph/9510338.

  42. M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett.54 (1985) 1215.

    Article  ADS  Google Scholar 

  43. Particle Data Group, Phys. Rev.D50 (1994) 1443.

    Google Scholar 

  44. M. K. Banerjee and J. B. Cammerata, Phys. Rev.D17 (1978) 1125.

    ADS  Google Scholar 

  45. N. M. Kroll, T. D. Lee and B. Zumino, Phys. Rev.157 (1967) 1376.

    Article  ADS  Google Scholar 

  46. T. H. R. Skyrme, Proc. Roy. Soc.A260 (1961) 127; Nucl. Phys.31 (1962) 556.

    ADS  MathSciNet  Google Scholar 

  47. J. Goldstone and F. Wilczek, Phys. Rev. Lett.47 (1981) 986.

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Witten, Nucl. Phys.B233 (1983) 422, 433.

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Wess and B. Zumino, Phys. Lett.B37 (1971) 95.

    ADS  MathSciNet  Google Scholar 

  50. I. Zahed and G. E. Brown, Phys. Reports142 (1986) 1.

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Froissart, Phys. Rev.123 (1961) 1053;

    Article  ADS  Google Scholar 

  52. A. Martin, Phys. Phys.129 (1963) 1432.

    MATH  ADS  Google Scholar 

  53. M. R. Pennington and J. Portoles, Phys. Lett.B344 (1995) 399.

    ADS  Google Scholar 

  54. K. Huber and H. Neufeld, Phys. Lett.B357 (1995) 221.

    ADS  Google Scholar 

  55. E. G. Floratos, S. Narison and E. de Rafael, Nucl. Phys.B155 (1979) 115.

    Article  ADS  Google Scholar 

  56. M. Harada and K. Yamawaki, Phys. Lett.B297 (1992) 151.

    ADS  Google Scholar 

  57. M. Harada, T. Kugo and K. Yamawaki, Phys. Rev. Lett.71 (1991) 1299; Prog. Theor. Phys.91 (1994) 801.

    Article  ADS  Google Scholar 

  58. R. S. Plant, private communication.

  59. J. Schechter, Phys. Rev.D34 (1986) 868.

    ADS  Google Scholar 

  60. U.-G. Meissner and I. Zahed, Z. Phys.A327 (1987) 5.

    Google Scholar 

  61. K. Yamawaki, Phys. Rev.D35 (1987) 412.

    ADS  Google Scholar 

  62. Ö. Kaymakcalan and J. Schechter, Phys. Rev.D31 (1984) 1109.

    ADS  Google Scholar 

  63. S. Weinberg, Phys. Rev. Lett.18 (1967) 507.

    Article  ADS  Google Scholar 

  64. E. A. Kuraev and Z. K. Silagadze, Phys. Lett.B292 (1992) 377;

    ADS  Google Scholar 

  65. E. L. Bratovskaya, E. A. Kuraev, Z. K. Silagadze and O. V. Teraev, Phys. Lett.B338 (1994) 471.

    ADS  Google Scholar 

  66. R. S. Plant and M. C. Birse, Phys. Lett.B365 (1996) 292.

    ADS  Google Scholar 

  67. P. K. Townsend, K. Pilch and P. van Nieuwenhuizen, Phys. Lett.B136 (1984) 38;

    ADS  Google Scholar 

  68. S. Deser and R. Jackiw, Phys. Lett.B139 (1984) 371.

    ADS  MathSciNet  Google Scholar 

  69. K. Maltman, Phys. Lett.B351 (1995) 507; hep-ph/9504237, hep-ph/9504404.

    Google Scholar 

  70. S. Gardner, C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett.75 (1995) 2462; nucl-th/9508035.

    Article  ADS  Google Scholar 

  71. K. Maltman, H. B. O’Connell and A. G. Williams, University of Adelaide preprint ADP-95-50/T197, hep-ph/9601309.

  72. T. D. Cohen and G. A. Miller, Phys. Rev.C52 (1995) 3428.

    ADS  Google Scholar 

  73. M. J. Iqbal, X. Jin and D. B. Leinweber, University of Washington preprint UW-PP-DOE/ER/40427-19-N95, nucl-th/9504026.

  74. K. Maltman, Phys. Lett.B362 (1995) 11.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Weise

This work is supported by the EPSRC and PPARC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birse, M.C. Effective chiral lagrangians for spin-1 mesons. Z. Physik A — Hadrons and Nuclei 355, 231–246 (1996). https://doi.org/10.1007/BF02769691

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769691

PACS

Navigation