Skip to main content
Log in

Impurity effect on Kramer-Pesch core shrinkage ins-wave vortex and chiralp-wave vortex

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The low-temperature shrinking of the vortex core (Kramer-Pesch effect) is studied for an isolated single vortex for chiral p-wave and s-wave superconducting phases. The effect of nonmagnetic impurities on the vortex core radius is numerically investigated in the Born limit by means of a quasiclassical approach. It is shown that in the chiral p-wave phase the Kramer-Pesch effect displays a certain robustness against impurities owing to a specific quantum effect, while the s-wave phase reacts more sensitively to impurity scattering. This suggests chiral p-wave superconductors as promising candidates for the experimental observation of the Kramer-Pesch effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Brandt, J. Vanacken, and V. V. Moshchalkov,Physica C 369, 1 (2002); G. E. Volovik,J. Low Temp. Phys. 121, 357 (2000).

    Article  ADS  Google Scholar 

  2. M. M. Salomaa and G. E. Volovik,Rev. Mod. Phys. 59, 533 (1987).

    Article  ADS  Google Scholar 

  3. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur,Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  4. E. H. Brandt,Rep. Prog. Phys. 58, 1465 (1995).

    Article  ADS  Google Scholar 

  5. L. Kramer and W. Pesch,Z. Phys. 269, 59 (1974).

    Article  ADS  Google Scholar 

  6. S. G. Doettinger, R. P. Huebener, and S. Kittelberger,Phys. Rev. B 55, 6044 (1997).

    Article  ADS  Google Scholar 

  7. C. Caroli, P. G. de Gennes, and J. Matricon,Phys. Lett. 9, 307 (1964).

    Article  MATH  ADS  Google Scholar 

  8. H. F. Hesset al., Phys. Rev. Lett. 62, 214 (1989);Phys. Rev. Lett. 64, 2711 (1990); Ch. Renneret al., Phys. Rev. Lett. 67, 1650 (1991).

    Article  ADS  Google Scholar 

  9. F. Gygi and M. Schlüter,Phys. Rev. B 43, 7609 (1991).

    Article  ADS  Google Scholar 

  10. N. schopohl and K. Maki,Phys. Rev. B 52, 490 (1995).

    Article  ADS  Google Scholar 

  11. D. Rainer, J. A. Sauls, and D. Waxman,Phys. Rev. B 54, 10094 (1996).

    Article  ADS  Google Scholar 

  12. N. Hayashi, M. Ichioka, and K. Machida,Phys. Rev. Lett. 77, 4074 (1996);Phys. Rev. B 56, 9052 (1997);J. Phys. Soc. Jpn. 67, 3368 (1998), eprint condmat/9807253.

    Article  ADS  Google Scholar 

  13. Y. Tanaka, A. Hasegawa, and H. Takayanagi,Solid State Commun. 85, 321 (1993); S. M. M. Virtanen and M. M. Salomaa,Phys. Rev. B 60, 14581 (1999);Physica B 284–288, 741 (2000).

    Article  Google Scholar 

  14. G. E. Volovik,JETP Lett. 58, 455 (1993).

    ADS  Google Scholar 

  15. W. Pesch and L. Kramer,J. Low Temp. Phys. 15, 367 (1974); L. Kramer, W. Pesch, and R. J. Watts-Tobin,J. Low Temp. Phys. 14, 29 (1974).

    Article  Google Scholar 

  16. E. H. Brandt,Phys. Status Solidi B 77, 105 (1976); see also Sec. 1.4 of Ref. 4.

    Article  Google Scholar 

  17. J. Rammer, W. Pesch, and L. Kramer,Z. Phys. B: Condens. Matter 68, 49 (1987).

    Article  Google Scholar 

  18. M. Ichioka, N. Hayashi, N. Enomoto, and K. Machida,Phys. Rev. B 53, 15316 (1996).

    Article  ADS  Google Scholar 

  19. A. P. Volodin, A. A. Golubov, and J. Aarts,Z. Phys. B 102, 317 (1997); an experimental result by STM is also given therein.

    Article  Google Scholar 

  20. N. Hayashi, T. Isoshima, M. Ichioka, and K. Machida,Phys. Rev. Lett. 80, 2921 (1998).

    Article  ADS  Google Scholar 

  21. M. Kato and K. Maki,Prog. Theor. Phys. 103, 867 (2000), eprint condmat/0004370.

    Article  ADS  Google Scholar 

  22. M. Kato and K. Maki,Europhys. Lett. 54, 800 (2001);Prog. Theor. Phys. 107, 941 (2002);Physica B 312–313, 47 (2002); eprint cond-mat/0011173; the temperature dependence of the vortex core radius is investigated therein for thed-wave superconductors in the quantum limit.

    Article  ADS  Google Scholar 

  23. Y. Kato and N. Hayashi,J. Phys. Soc. Jpn. 70, 3368 (2001), eprint condmat/0107517.

    Article  ADS  Google Scholar 

  24. Ø. Elgarøy, eprint cond-mat/0111440; N. Nygaard, G. M. Bruun, C. W. Clark, and D. L. Feder,Phys. Rev. Lett. 90, 210402 (2003).

    Article  Google Scholar 

  25. F. V. de Blasio and Ø. Elgarøy,Phys. Rev. Lett. 82, 1815 (1999); Ø. Elgarøy and F. V. de Blasio,Astron. Astrophys. 370, 939 (2001), eprint astro-ph/0102343.

    Article  ADS  Google Scholar 

  26. For a latest review, J. E. Sonier,J. Phys.: Condens. Matter 16, S4499 (2004), eprint cond-mat/0404115.

    Article  ADS  Google Scholar 

  27. Yu. N. Ovchinnikov,Z. Phys. B 27, 239 (1977).

    Article  Google Scholar 

  28. J. E. Sonier, J. H. Brewer, and R. F. Kiefl,Rev. Mod. Phys. 72, 769 (2000).

    Article  ADS  Google Scholar 

  29. J. E. Sonieret al., Phys. Rev. Lett. 79, 2875 (1997).

    Article  ADS  Google Scholar 

  30. R. I. Milleret al., Phys. Rev. Lett. 85, 1540 (2000).

    Article  ADS  Google Scholar 

  31. A. Yaouanc, P. Dalmas de Réotier, and E. H. Brandt,Phys. Rev. B 55, 11107 (1997).

    Article  ADS  Google Scholar 

  32. R. Kadonoet al., Phys. Rev. B 63, 224520 (2001).

    Article  ADS  Google Scholar 

  33. A. A. Golubov and U. Hartmann,Phys. Rev. Lett. 72, 3602 (1994).

    Article  ADS  Google Scholar 

  34. M. Ichioka, A. Hasegawa, and K. Machida,Phys. Rev. B 59, 184 (1999);Phys. Rev. B 59, 8902 (1999).

    Article  ADS  Google Scholar 

  35. P. Miranović, M. Ichioka, and K. Machida,Phys. Rev. B 70, 104510 (2004).

    Article  ADS  Google Scholar 

  36. V. G. Kogan and N. V. Zhelezina, eprint cond-mat/0407673.

  37. J. E. Sonieret al., Phys. Rev. Lett. 79, 1742 (1997);Phys. Rev. Lett. 93, 017002 (2004).

    Article  ADS  Google Scholar 

  38. M. Fogelström and J. Kurkijärvi,J. Low Temp. Phys. 98, 195 (1995).

    Article  Google Scholar 

  39. R. Kadonoet al., Phys. Rev. B 69, 104523 (2004); M. Takigawa, M. Ichioka, and K. Machida,J. Phys. Soc. Jpn. 73, 450 (2004), eprint cond-mat/0303541.

    Article  ADS  Google Scholar 

  40. A. E. Koshelev and A. A. Golubov,Phys. Rev. Lett. 90, 177002 (2003).

    Article  ADS  Google Scholar 

  41. N. Hayashi, Y. Kato, and M. Sigrist, in preparation.

  42. T. M. Rice and M. Sigrist,J. Phys.: Condens. Matter 7, L643 (1995); M. Sigristet al., Physica C 317–318, 134 (1999).

    Article  ADS  Google Scholar 

  43. A. P. Mackenzie and Y. Maeno,Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  Google Scholar 

  44. G. E. Volovik,JETP Lett. 70, 609 (1999); eprint cond-mat/9709159.

    Article  ADS  Google Scholar 

  45. Y. Kato,J. Phys. Soc. Jpn. 69, 3378 (2000), eprint cond-mat/0009296.

    Article  ADS  Google Scholar 

  46. Y. Kato and N. Hayashi,J. Phys. Soc. Jpn. 71, 1721 (2002), eprint condmat/0203271.

    Article  ADS  Google Scholar 

  47. N. Hayashi and Y. Kato,Physica C 367, 41 (2002);Phys. Rev. B 66, 132511 (2002).

    Article  ADS  Google Scholar 

  48. N. Hayashi and Y. Kato,J. Low Temp. Phys. 130, 193 (2003), eprint condmat/0210642.

    Article  Google Scholar 

  49. Y. Kato and N. Hayashi,Physica C 388–389, 519 (2003).

    Article  Google Scholar 

  50. M. Matsumoto and M. Sigrist,Physica B 281–282, 973 (2000).

    Article  Google Scholar 

  51. M. Matsumoto and R. Heeb,Phys. Rev. B 65, 014504 (2002).

    Article  ADS  Google Scholar 

  52. R. Heeb and D. F. Agterberg,Phys. Rev. B 59, 7076 (1999).

    Article  ADS  Google Scholar 

  53. A. Tanaka and X. Hu,Phys. Rev. Lett. 91, 257006 (2003).

    Article  ADS  Google Scholar 

  54. Q. Han, Z. D. Wang, Q.-H. Wang, and T. Xia,Phys. Rev. Lett. 92, 027004 (2004).

    Article  ADS  Google Scholar 

  55. G. Eilenberger,Z. Phys. 214, 195 (1968); A. I. Larkin and Yu. N. Ovchinnikov,Zh. Éksp. Teor. Fiz. 55, 2262 (1968), [Sov. Phys. JETP 28, 1200 (1969)]; J. W. Serene and D. Rainer,Phys. Rep. 101, 221 (1983).

    Article  ADS  Google Scholar 

  56. H. Kusunose,Phys. Rev. B 70, 054509 (2004); the derivation of the quasiclassical equations is concisely summarised therein.

    Article  ADS  Google Scholar 

  57. E. V. Thuneberg, J. Kurkijärvi, and D. Rainer,Phys. Rev. B 29, 3913 (1984);J. Phys. C: Solid State Phys. 14, 5615 (1981).

    Article  ADS  Google Scholar 

  58. N. Schopohl, eprint cond-mat/9804064.

  59. M. Eschrig, Ph.D. Thesis, University of Bayreuth, 1997; H. Eschrig,Optimized LCAO Method and the Electronic Structure of Extended Systems (Springer-Verlag, Berlin, 1989), Sec. 7.4.

  60. M. Tinkham,Introduction to Superconductivity, 2nd Ed. (McGraw-Hill, New York, 1996).

    Google Scholar 

  61. D. F. Agterberg, T. M. Rice, and M. Sigrist,Phys. Rev. Lett. 78, 3374 (1997).

    Article  ADS  Google Scholar 

  62. H. Kusunose,J. Phys. Soc. Jpn. 73, 2512 (2004), eprint cond-mat/0405631.

    Article  ADS  Google Scholar 

  63. E. boakninet al., Phys. Rev. Lett. 90, 117003 (2003).

    Article  ADS  Google Scholar 

  64. H. J. Choiet al., Nature 418, 758 (2002); N. Nakaiet al., J. Phys. Soc. Jpn. 71, 23 (2002), eprint cond-mat/0111088; S. Tsudaet al., Phys. Rev. Lett. 91, 127001 (2003); T. Dahm and N. Schopohl,Phys. Rev. Lett. 91, 017001 (2003); A. Shibataet al., Phys. Rev. B 68, 060501 (2003); T. Dahm, eprint condmat/0410158.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, N., Kato, Y. & Sigrist, M. Impurity effect on Kramer-Pesch core shrinkage ins-wave vortex and chiralp-wave vortex. J Low Temp Phys 139, 79–96 (2005). https://doi.org/10.1007/BF02769568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769568

PACS numbers

Navigation